Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367183794> ?p ?o ?g. }
- W4367183794 endingPage "23" @default.
- W4367183794 startingPage "1" @default.
- W4367183794 abstract "Surface roughness is primarily used to evaluate the surface finish of a workpiece, which significantly affects the quality performance of the finished components. Effective surface roughness prediction can reduce the time of trial-and-test, thus increasing productivity and reducing costs. Although earlier studies have proposed many different prediction approaches for different machining methods, few studies have been done to develop a generic approach for surface roughness prediction. Therefore, this paper presents a generic evolutionary ensemble learning (GEEL) framework for surface roughness prediction of different kinds of manufacturing process. The GEEL framework for surface roughness prediction consists of three modules, including pre-processing module, multi-algorithm regression module, and GA-based ensemble learning module. Validation experiments were conducted on fluid jet polishing (FJP) of 3D-printed Cobalt Chrome (CoCr) alloy and other seven cases of different machining methods. The results indicate that the mean square error (MSE) and mean absolute error (MAE), obtained by the proposed method were reduced to a certain extent than typical methods in predicting the surface roughness, exhibiting excellent prediction performance and robustness. At the same time, the method has good extensibility and is expected to become a generic framework for surface roughness prediction in manufacturing." @default.
- W4367183794 created "2023-04-28" @default.
- W4367183794 creator A5047734915 @default.
- W4367183794 creator A5052933227 @default.
- W4367183794 creator A5056302216 @default.
- W4367183794 creator A5076490243 @default.
- W4367183794 creator A5090899232 @default.
- W4367183794 date "2023-04-26" @default.
- W4367183794 modified "2023-10-01" @default.
- W4367183794 title "A generic evolutionary ensemble learning framework for surface roughness prediction in manufacturing" @default.
- W4367183794 cites W1678356000 @default.
- W4367183794 cites W1970079504 @default.
- W4367183794 cites W1978618432 @default.
- W4367183794 cites W1982445933 @default.
- W4367183794 cites W1998166518 @default.
- W4367183794 cites W2001209375 @default.
- W4367183794 cites W2004286896 @default.
- W4367183794 cites W2009868344 @default.
- W4367183794 cites W2018816054 @default.
- W4367183794 cites W2025867049 @default.
- W4367183794 cites W2038338100 @default.
- W4367183794 cites W2039126780 @default.
- W4367183794 cites W2043629449 @default.
- W4367183794 cites W2046422035 @default.
- W4367183794 cites W2056132907 @default.
- W4367183794 cites W2085783010 @default.
- W4367183794 cites W2088347837 @default.
- W4367183794 cites W2121753122 @default.
- W4367183794 cites W2122825543 @default.
- W4367183794 cites W2125993116 @default.
- W4367183794 cites W2135046866 @default.
- W4367183794 cites W2144431467 @default.
- W4367183794 cites W2166180529 @default.
- W4367183794 cites W2270330859 @default.
- W4367183794 cites W2297826047 @default.
- W4367183794 cites W2337407582 @default.
- W4367183794 cites W2465375825 @default.
- W4367183794 cites W2488162289 @default.
- W4367183794 cites W2494655369 @default.
- W4367183794 cites W2542763271 @default.
- W4367183794 cites W2611951844 @default.
- W4367183794 cites W2617105262 @default.
- W4367183794 cites W2802415864 @default.
- W4367183794 cites W2886996353 @default.
- W4367183794 cites W2911964244 @default.
- W4367183794 cites W2914396452 @default.
- W4367183794 cites W2944254229 @default.
- W4367183794 cites W2976842690 @default.
- W4367183794 cites W2990805201 @default.
- W4367183794 cites W3015770290 @default.
- W4367183794 cites W3017133392 @default.
- W4367183794 cites W3087360820 @default.
- W4367183794 cites W3095800599 @default.
- W4367183794 cites W3102476541 @default.
- W4367183794 cites W3111513880 @default.
- W4367183794 cites W3120338070 @default.
- W4367183794 cites W3121216533 @default.
- W4367183794 cites W3121721182 @default.
- W4367183794 cites W3124590480 @default.
- W4367183794 cites W3135583515 @default.
- W4367183794 cites W3136714975 @default.
- W4367183794 cites W3185971715 @default.
- W4367183794 cites W4242841269 @default.
- W4367183794 doi "https://doi.org/10.1080/0951192x.2023.2204486" @default.
- W4367183794 hasPublicationYear "2023" @default.
- W4367183794 type Work @default.
- W4367183794 citedByCount "0" @default.
- W4367183794 crossrefType "journal-article" @default.
- W4367183794 hasAuthorship W4367183794A5047734915 @default.
- W4367183794 hasAuthorship W4367183794A5052933227 @default.
- W4367183794 hasAuthorship W4367183794A5056302216 @default.
- W4367183794 hasAuthorship W4367183794A5076490243 @default.
- W4367183794 hasAuthorship W4367183794A5090899232 @default.
- W4367183794 hasConcept C104317684 @default.
- W4367183794 hasConcept C105795698 @default.
- W4367183794 hasConcept C107365816 @default.
- W4367183794 hasConcept C11413529 @default.
- W4367183794 hasConcept C119857082 @default.
- W4367183794 hasConcept C127413603 @default.
- W4367183794 hasConcept C138113353 @default.
- W4367183794 hasConcept C139945424 @default.
- W4367183794 hasConcept C154945302 @default.
- W4367183794 hasConcept C159985019 @default.
- W4367183794 hasConcept C185592680 @default.
- W4367183794 hasConcept C192562407 @default.
- W4367183794 hasConcept C199639397 @default.
- W4367183794 hasConcept C33923547 @default.
- W4367183794 hasConcept C41008148 @default.
- W4367183794 hasConcept C45942800 @default.
- W4367183794 hasConcept C523214423 @default.
- W4367183794 hasConcept C55493867 @default.
- W4367183794 hasConcept C63479239 @default.
- W4367183794 hasConcept C71039073 @default.
- W4367183794 hasConcept C78519656 @default.
- W4367183794 hasConceptScore W4367183794C104317684 @default.
- W4367183794 hasConceptScore W4367183794C105795698 @default.
- W4367183794 hasConceptScore W4367183794C107365816 @default.
- W4367183794 hasConceptScore W4367183794C11413529 @default.