Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367185867> ?p ?o ?g. }
- W4367185867 endingPage "20" @default.
- W4367185867 startingPage "9" @default.
- W4367185867 abstract "For those who invest in real estate as an investment tool, as well as those who buy and sell real estate, the price of real estate should be predicted realistically and with the highest accuracy. It should be noted that the predict model should be the most appropriate representation of the underlying fundamentals of the market. Otherwise, the mistake to be made in the real estate valuation will cause some undesirable results such as inconsistent and unhealthy increase or decrease of the property tax, excessive gains or losses in favor of some groups, and adverse effects on investors and potential real estate owners. At this point, data-driven real estate valuation approaches are preferred more frequently to create highly accurate and unbiased estimates. However, the consistency, precision and accuracy of the models realized with machine learning approaches are directly related to the data quality. At this point, the effects of outlier detection on prediction performance in real estate valuation are investigated with a large data set obtained in this study. For this purpose, a heterogeneous data set with 70.771 real estate data and 283 variables, 4 different outlier detection methods were tested with 3 different machine learning approaches. The empirical findings reveal that the use of different outlier detection approaches increases the prediction performance in different ranges. With the best outlier detection approach, this performance increase was at a high 21,6% for Random Forest, with a 6,97% increase in average model performance." @default.
- W4367185867 created "2023-04-28" @default.
- W4367185867 creator A5002971647 @default.
- W4367185867 creator A5068530867 @default.
- W4367185867 creator A5071094744 @default.
- W4367185867 date "2023-07-18" @default.
- W4367185867 modified "2023-10-01" @default.
- W4367185867 title "The Effect of Outlier Detection Methods in Real Estate Valuation with Machine Learning" @default.
- W4367185867 cites W1504778066 @default.
- W4367185867 cites W1977478029 @default.
- W4367185867 cites W2011787499 @default.
- W4367185867 cites W2041976578 @default.
- W4367185867 cites W2067141068 @default.
- W4367185867 cites W2075658394 @default.
- W4367185867 cites W2077410226 @default.
- W4367185867 cites W2122111042 @default.
- W4367185867 cites W2131265509 @default.
- W4367185867 cites W2135046866 @default.
- W4367185867 cites W2137130182 @default.
- W4367185867 cites W2296719434 @default.
- W4367185867 cites W2736337626 @default.
- W4367185867 cites W2762938862 @default.
- W4367185867 cites W2772638665 @default.
- W4367185867 cites W2786535488 @default.
- W4367185867 cites W2884124743 @default.
- W4367185867 cites W2896223134 @default.
- W4367185867 cites W2907001860 @default.
- W4367185867 cites W2908163441 @default.
- W4367185867 cites W2910451380 @default.
- W4367185867 cites W2911964244 @default.
- W4367185867 cites W2922414076 @default.
- W4367185867 cites W2941752302 @default.
- W4367185867 cites W2971456958 @default.
- W4367185867 cites W2984960739 @default.
- W4367185867 cites W2995412973 @default.
- W4367185867 cites W2998199921 @default.
- W4367185867 cites W3007587150 @default.
- W4367185867 cites W3009040405 @default.
- W4367185867 cites W3009049151 @default.
- W4367185867 cites W3013086188 @default.
- W4367185867 cites W3016425697 @default.
- W4367185867 cites W3018886421 @default.
- W4367185867 cites W3019435264 @default.
- W4367185867 cites W3038998507 @default.
- W4367185867 cites W3040134069 @default.
- W4367185867 cites W3041783027 @default.
- W4367185867 cites W3045887218 @default.
- W4367185867 cites W3046758874 @default.
- W4367185867 cites W3080996596 @default.
- W4367185867 cites W3082215776 @default.
- W4367185867 cites W3112071392 @default.
- W4367185867 cites W3123930234 @default.
- W4367185867 cites W3131980259 @default.
- W4367185867 cites W3132460254 @default.
- W4367185867 cites W3134319253 @default.
- W4367185867 cites W3136248330 @default.
- W4367185867 cites W3152343295 @default.
- W4367185867 cites W3153734228 @default.
- W4367185867 cites W3155753394 @default.
- W4367185867 cites W3165345340 @default.
- W4367185867 cites W3171822127 @default.
- W4367185867 cites W3202024333 @default.
- W4367185867 cites W3202703023 @default.
- W4367185867 cites W3206195980 @default.
- W4367185867 cites W3207043732 @default.
- W4367185867 cites W3209991771 @default.
- W4367185867 cites W3213421813 @default.
- W4367185867 cites W3217174244 @default.
- W4367185867 cites W4200385155 @default.
- W4367185867 cites W4229021609 @default.
- W4367185867 cites W4232414833 @default.
- W4367185867 cites W4288616679 @default.
- W4367185867 cites W4292261570 @default.
- W4367185867 cites W607289276 @default.
- W4367185867 doi "https://doi.org/10.47899/ijss.1270433" @default.
- W4367185867 hasPublicationYear "2023" @default.
- W4367185867 type Work @default.
- W4367185867 citedByCount "0" @default.
- W4367185867 crossrefType "journal-article" @default.
- W4367185867 hasAuthorship W4367185867A5002971647 @default.
- W4367185867 hasAuthorship W4367185867A5068530867 @default.
- W4367185867 hasAuthorship W4367185867A5071094744 @default.
- W4367185867 hasBestOaLocation W43671858671 @default.
- W4367185867 hasConcept C10138342 @default.
- W4367185867 hasConcept C112136304 @default.
- W4367185867 hasConcept C119857082 @default.
- W4367185867 hasConcept C124101348 @default.
- W4367185867 hasConcept C149782125 @default.
- W4367185867 hasConcept C154527381 @default.
- W4367185867 hasConcept C154945302 @default.
- W4367185867 hasConcept C162324750 @default.
- W4367185867 hasConcept C186027771 @default.
- W4367185867 hasConcept C38815200 @default.
- W4367185867 hasConcept C41008148 @default.
- W4367185867 hasConcept C739882 @default.
- W4367185867 hasConcept C79337645 @default.
- W4367185867 hasConcept C82279013 @default.
- W4367185867 hasConceptScore W4367185867C10138342 @default.