Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367185893> ?p ?o ?g. }
- W4367185893 endingPage "102556" @default.
- W4367185893 startingPage "102556" @default.
- W4367185893 abstract "Early melanoma diagnosis is the most important factor in the treatment of skin cancer and can effectively reduce mortality rates. Recently, Generative Adversarial Networks have been used to augment data, prevent overfitting and improve the diagnostic capacity of models. However, its application remains a challenging task due to the high levels of inter and intra-class variance seen in skin images, limited amounts of data, and model instability. We present a more robust Progressive Growing of Adversarial Networks based on residual learning, which is highly recommended to ease the training of deep networks. The stability of the training process was increased by receiving additional inputs from preceding blocks. The architecture is able to produce plausible photorealistic synthetic 512 × 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problem domains. In this manner, we tackle the lack of data and the imbalance problems. Additionally, the proposed approach leverages a skin lesion boundary segmentation algorithm and transfer learning to enhance the diagnosis of melanoma. Inception score and Matthews Correlation Coefficient were used to measure the performance of the models. The architecture was evaluated qualitatively and quantitatively through the use of an extensive experimental study on sixteen datasets, illustrating its effectiveness in the diagnosis of melanoma. Finally, four state-of-the-art data augmentation techniques applied in five convolutional neural network models were significantly outperformed. The results indicated that a bigger number of trainable parameters will not necessarily obtain a better performance in melanoma diagnosis." @default.
- W4367185893 created "2023-04-28" @default.
- W4367185893 creator A5002562252 @default.
- W4367185893 creator A5073946143 @default.
- W4367185893 date "2023-07-01" @default.
- W4367185893 modified "2023-09-26" @default.
- W4367185893 title "Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis" @default.
- W4367185893 cites W1987971958 @default.
- W4367185893 cites W2005088335 @default.
- W4367185893 cites W2016944307 @default.
- W4367185893 cites W2036714085 @default.
- W4367185893 cites W2124911115 @default.
- W4367185893 cites W2132424367 @default.
- W4367185893 cites W2164273268 @default.
- W4367185893 cites W2194775991 @default.
- W4367185893 cites W2537189671 @default.
- W4367185893 cites W2581082771 @default.
- W4367185893 cites W2593414223 @default.
- W4367185893 cites W2620760558 @default.
- W4367185893 cites W2752585553 @default.
- W4367185893 cites W2771104702 @default.
- W4367185893 cites W2797527544 @default.
- W4367185893 cites W2884805522 @default.
- W4367185893 cites W2907719205 @default.
- W4367185893 cites W2921785317 @default.
- W4367185893 cites W2942649361 @default.
- W4367185893 cites W2945008339 @default.
- W4367185893 cites W2956123709 @default.
- W4367185893 cites W2963185411 @default.
- W4367185893 cites W2963446712 @default.
- W4367185893 cites W2963830453 @default.
- W4367185893 cites W2999309192 @default.
- W4367185893 cites W3001669684 @default.
- W4367185893 cites W3005221849 @default.
- W4367185893 cites W3029477994 @default.
- W4367185893 cites W3033616466 @default.
- W4367185893 cites W3082317190 @default.
- W4367185893 cites W3093045698 @default.
- W4367185893 cites W3126232929 @default.
- W4367185893 cites W3175657947 @default.
- W4367185893 cites W3197606668 @default.
- W4367185893 cites W3201898231 @default.
- W4367185893 cites W4244042913 @default.
- W4367185893 cites W4252684946 @default.
- W4367185893 cites W4294541506 @default.
- W4367185893 doi "https://doi.org/10.1016/j.artmed.2023.102556" @default.
- W4367185893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37295899" @default.
- W4367185893 hasPublicationYear "2023" @default.
- W4367185893 type Work @default.
- W4367185893 citedByCount "0" @default.
- W4367185893 crossrefType "journal-article" @default.
- W4367185893 hasAuthorship W4367185893A5002562252 @default.
- W4367185893 hasAuthorship W4367185893A5073946143 @default.
- W4367185893 hasBestOaLocation W43671858931 @default.
- W4367185893 hasConcept C105795698 @default.
- W4367185893 hasConcept C108583219 @default.
- W4367185893 hasConcept C115961682 @default.
- W4367185893 hasConcept C119857082 @default.
- W4367185893 hasConcept C121608353 @default.
- W4367185893 hasConcept C126322002 @default.
- W4367185893 hasConcept C153180895 @default.
- W4367185893 hasConcept C154945302 @default.
- W4367185893 hasConcept C22019652 @default.
- W4367185893 hasConcept C27158222 @default.
- W4367185893 hasConcept C2777789703 @default.
- W4367185893 hasConcept C33923547 @default.
- W4367185893 hasConcept C41008148 @default.
- W4367185893 hasConcept C50644808 @default.
- W4367185893 hasConcept C71924100 @default.
- W4367185893 hasConcept C75294576 @default.
- W4367185893 hasConcept C81363708 @default.
- W4367185893 hasConcept C89600930 @default.
- W4367185893 hasConceptScore W4367185893C105795698 @default.
- W4367185893 hasConceptScore W4367185893C108583219 @default.
- W4367185893 hasConceptScore W4367185893C115961682 @default.
- W4367185893 hasConceptScore W4367185893C119857082 @default.
- W4367185893 hasConceptScore W4367185893C121608353 @default.
- W4367185893 hasConceptScore W4367185893C126322002 @default.
- W4367185893 hasConceptScore W4367185893C153180895 @default.
- W4367185893 hasConceptScore W4367185893C154945302 @default.
- W4367185893 hasConceptScore W4367185893C22019652 @default.
- W4367185893 hasConceptScore W4367185893C27158222 @default.
- W4367185893 hasConceptScore W4367185893C2777789703 @default.
- W4367185893 hasConceptScore W4367185893C33923547 @default.
- W4367185893 hasConceptScore W4367185893C41008148 @default.
- W4367185893 hasConceptScore W4367185893C50644808 @default.
- W4367185893 hasConceptScore W4367185893C71924100 @default.
- W4367185893 hasConceptScore W4367185893C75294576 @default.
- W4367185893 hasConceptScore W4367185893C81363708 @default.
- W4367185893 hasConceptScore W4367185893C89600930 @default.
- W4367185893 hasLocation W43671858931 @default.
- W4367185893 hasLocation W43671858932 @default.
- W4367185893 hasOpenAccess W4367185893 @default.
- W4367185893 hasPrimaryLocation W43671858931 @default.
- W4367185893 hasRelatedWork W2767651786 @default.
- W4367185893 hasRelatedWork W2997709384 @default.
- W4367185893 hasRelatedWork W3012393889 @default.
- W4367185893 hasRelatedWork W3156786002 @default.