Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367185979> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4367185979 endingPage "742" @default.
- W4367185979 startingPage "729" @default.
- W4367185979 abstract "There are many factors that can change and affect appearance, including age and environment. Knowing the skin type helps to choose the products best suited to the needs of the skin and therefore the right skin care. Recently, the increasing demand for cosmetics and the scarcity of well-equipped cosmetologists have encouraged cosmetology centers to meet the need by using artificial intelligence applications. Deep learning applications can give high accuracy results in determining the skin type. Recent research shows that learning performs better on nonlinear data than machine learning methods. The aim of this study is to find the best classification model for skin type prediction in skin analysis data with deep learning. For this purpose, 4 different optimization algorithms as Sgd, Adagrad, Adam and Adamax; Tanh and ReLU activation functions and combinations of different neuron numbers using, 16 different models were created.In experimental studies, the performance of the models varies according to the parameters, and it has been observed that the most successful deep neural network model is the model consisting of 64 neurons, Sgd optimization function and ReLU activation function combination with a success rate of 93.75. The accuracy result obtained has a higher classification success compared to other methods, and shows that deep neural networks can make an accurate skin type classification." @default.
- W4367185979 created "2023-04-28" @default.
- W4367185979 creator A5004803854 @default.
- W4367185979 creator A5006841801 @default.
- W4367185979 creator A5032299741 @default.
- W4367185979 date "2023-04-30" @default.
- W4367185979 modified "2023-09-25" @default.
- W4367185979 title "Skin Type Detection with Deep Learning: A Comparative Analysis" @default.
- W4367185979 cites W2105750284 @default.
- W4367185979 cites W2323481414 @default.
- W4367185979 cites W2595557940 @default.
- W4367185979 cites W2620219072 @default.
- W4367185979 cites W2761705332 @default.
- W4367185979 cites W2774057992 @default.
- W4367185979 cites W2805033630 @default.
- W4367185979 cites W2942067081 @default.
- W4367185979 cites W2953139847 @default.
- W4367185979 cites W2965857035 @default.
- W4367185979 cites W2971998616 @default.
- W4367185979 cites W3030738016 @default.
- W4367185979 cites W3104663419 @default.
- W4367185979 cites W4231109964 @default.
- W4367185979 doi "https://doi.org/10.29130/dubited.930096" @default.
- W4367185979 hasPublicationYear "2023" @default.
- W4367185979 type Work @default.
- W4367185979 citedByCount "0" @default.
- W4367185979 crossrefType "journal-article" @default.
- W4367185979 hasAuthorship W4367185979A5004803854 @default.
- W4367185979 hasAuthorship W4367185979A5006841801 @default.
- W4367185979 hasAuthorship W4367185979A5032299741 @default.
- W4367185979 hasBestOaLocation W43671859791 @default.
- W4367185979 hasConcept C108583219 @default.
- W4367185979 hasConcept C109747225 @default.
- W4367185979 hasConcept C119857082 @default.
- W4367185979 hasConcept C14036430 @default.
- W4367185979 hasConcept C142362112 @default.
- W4367185979 hasConcept C153180895 @default.
- W4367185979 hasConcept C153349607 @default.
- W4367185979 hasConcept C154945302 @default.
- W4367185979 hasConcept C162324750 @default.
- W4367185979 hasConcept C175444787 @default.
- W4367185979 hasConcept C18903297 @default.
- W4367185979 hasConcept C24168220 @default.
- W4367185979 hasConcept C2777299769 @default.
- W4367185979 hasConcept C38365724 @default.
- W4367185979 hasConcept C41008148 @default.
- W4367185979 hasConcept C50644808 @default.
- W4367185979 hasConcept C78458016 @default.
- W4367185979 hasConcept C81363708 @default.
- W4367185979 hasConcept C86803240 @default.
- W4367185979 hasConceptScore W4367185979C108583219 @default.
- W4367185979 hasConceptScore W4367185979C109747225 @default.
- W4367185979 hasConceptScore W4367185979C119857082 @default.
- W4367185979 hasConceptScore W4367185979C14036430 @default.
- W4367185979 hasConceptScore W4367185979C142362112 @default.
- W4367185979 hasConceptScore W4367185979C153180895 @default.
- W4367185979 hasConceptScore W4367185979C153349607 @default.
- W4367185979 hasConceptScore W4367185979C154945302 @default.
- W4367185979 hasConceptScore W4367185979C162324750 @default.
- W4367185979 hasConceptScore W4367185979C175444787 @default.
- W4367185979 hasConceptScore W4367185979C18903297 @default.
- W4367185979 hasConceptScore W4367185979C24168220 @default.
- W4367185979 hasConceptScore W4367185979C2777299769 @default.
- W4367185979 hasConceptScore W4367185979C38365724 @default.
- W4367185979 hasConceptScore W4367185979C41008148 @default.
- W4367185979 hasConceptScore W4367185979C50644808 @default.
- W4367185979 hasConceptScore W4367185979C78458016 @default.
- W4367185979 hasConceptScore W4367185979C81363708 @default.
- W4367185979 hasConceptScore W4367185979C86803240 @default.
- W4367185979 hasIssue "2" @default.
- W4367185979 hasLocation W43671859791 @default.
- W4367185979 hasLocation W43671859792 @default.
- W4367185979 hasOpenAccess W4367185979 @default.
- W4367185979 hasPrimaryLocation W43671859791 @default.
- W4367185979 hasRelatedWork W2731899572 @default.
- W4367185979 hasRelatedWork W2999805992 @default.
- W4367185979 hasRelatedWork W3116150086 @default.
- W4367185979 hasRelatedWork W3133861977 @default.
- W4367185979 hasRelatedWork W4200173597 @default.
- W4367185979 hasRelatedWork W4223943233 @default.
- W4367185979 hasRelatedWork W4291897433 @default.
- W4367185979 hasRelatedWork W4312417841 @default.
- W4367185979 hasRelatedWork W4321369474 @default.
- W4367185979 hasRelatedWork W4380075502 @default.
- W4367185979 hasVolume "11" @default.
- W4367185979 isParatext "false" @default.
- W4367185979 isRetracted "false" @default.
- W4367185979 workType "article" @default.