Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367186160> ?p ?o ?g. }
- W4367186160 endingPage "120277" @default.
- W4367186160 startingPage "120277" @default.
- W4367186160 abstract "Low-quality tomograms constrain the potential of the electrical capacitance tomography technology. In order to break through this bottleneck and innovate reconstruction algorithms, the deep transfer learning prior (DTLP) is introduced in this study, which is coupled with the imaging physical mechanisms and the domain knowledge modeled by a new regularizer into a new imaging model. The proposed imaging model is solved by a new optimizer in a simpler and less computationally expensive way. A new deep transfer learning method is developed to infer DTLPs by synergizing deep convolutional neural network with extreme learning machine (ELM) based on the collected multi-fidelity training samples. The training of the ELM is formulated into a new bilevel optimization problem, and a new nested optimizer is proposed to solve the problem. The quantitative and qualitative evaluation results confirm that the new method shows performance advantages over popular imaging methods in terms of detail restoration, noise immunity, artifact removal and edge preservation. The proposed imaging method synergizes deep transfer learning with imaging physical mechanisms, providing new opportunities and insights for unlocking the potential of the measurement technique and achieving better reconstructions." @default.
- W4367186160 created "2023-04-28" @default.
- W4367186160 creator A5018989901 @default.
- W4367186160 creator A5033284348 @default.
- W4367186160 date "2023-10-01" @default.
- W4367186160 modified "2023-09-28" @default.
- W4367186160 title "Transfer learning-driven inversion method for the imaging problem in electrical capacitance tomography" @default.
- W4367186160 cites W1979812822 @default.
- W4367186160 cites W1984011536 @default.
- W4367186160 cites W1985453570 @default.
- W4367186160 cites W2003457432 @default.
- W4367186160 cites W2015071882 @default.
- W4367186160 cites W2035414577 @default.
- W4367186160 cites W2042597321 @default.
- W4367186160 cites W2066020965 @default.
- W4367186160 cites W2069558524 @default.
- W4367186160 cites W2100556411 @default.
- W4367186160 cites W2106030748 @default.
- W4367186160 cites W2112796928 @default.
- W4367186160 cites W2114314161 @default.
- W4367186160 cites W2142058898 @default.
- W4367186160 cites W2146081698 @default.
- W4367186160 cites W2531859882 @default.
- W4367186160 cites W2582639297 @default.
- W4367186160 cites W2585514839 @default.
- W4367186160 cites W2622826443 @default.
- W4367186160 cites W2746167419 @default.
- W4367186160 cites W2776616597 @default.
- W4367186160 cites W2778924750 @default.
- W4367186160 cites W2836448562 @default.
- W4367186160 cites W2885425652 @default.
- W4367186160 cites W2895901585 @default.
- W4367186160 cites W2897173776 @default.
- W4367186160 cites W2901101316 @default.
- W4367186160 cites W2904054353 @default.
- W4367186160 cites W2911290743 @default.
- W4367186160 cites W2919115771 @default.
- W4367186160 cites W2921995309 @default.
- W4367186160 cites W2955454312 @default.
- W4367186160 cites W2958908615 @default.
- W4367186160 cites W2962733564 @default.
- W4367186160 cites W2962755227 @default.
- W4367186160 cites W2996149946 @default.
- W4367186160 cites W2998784361 @default.
- W4367186160 cites W2998812258 @default.
- W4367186160 cites W2999762823 @default.
- W4367186160 cites W2999823538 @default.
- W4367186160 cites W3012109984 @default.
- W4367186160 cites W3015330331 @default.
- W4367186160 cites W3031397607 @default.
- W4367186160 cites W3034994546 @default.
- W4367186160 cites W3040429391 @default.
- W4367186160 cites W3040793855 @default.
- W4367186160 cites W3091684735 @default.
- W4367186160 cites W3094038192 @default.
- W4367186160 cites W3094153554 @default.
- W4367186160 cites W3094686023 @default.
- W4367186160 cites W3094704314 @default.
- W4367186160 cites W3098467649 @default.
- W4367186160 cites W3106800919 @default.
- W4367186160 cites W3110908156 @default.
- W4367186160 cites W3120364773 @default.
- W4367186160 cites W3122799380 @default.
- W4367186160 cites W3124168869 @default.
- W4367186160 cites W3133902371 @default.
- W4367186160 cites W3134155979 @default.
- W4367186160 cites W3135564681 @default.
- W4367186160 cites W3148577423 @default.
- W4367186160 cites W3159302505 @default.
- W4367186160 cites W3159711536 @default.
- W4367186160 cites W3168220422 @default.
- W4367186160 cites W3173578264 @default.
- W4367186160 cites W3201841267 @default.
- W4367186160 cites W3204805281 @default.
- W4367186160 cites W3205944726 @default.
- W4367186160 cites W3208754111 @default.
- W4367186160 cites W3210809370 @default.
- W4367186160 cites W3216821690 @default.
- W4367186160 cites W4200119360 @default.
- W4367186160 cites W4200162047 @default.
- W4367186160 cites W4210535087 @default.
- W4367186160 cites W4220747501 @default.
- W4367186160 cites W4223909096 @default.
- W4367186160 cites W4280559665 @default.
- W4367186160 cites W4280583279 @default.
- W4367186160 doi "https://doi.org/10.1016/j.eswa.2023.120277" @default.
- W4367186160 hasPublicationYear "2023" @default.
- W4367186160 type Work @default.
- W4367186160 citedByCount "0" @default.
- W4367186160 crossrefType "journal-article" @default.
- W4367186160 hasAuthorship W4367186160A5018989901 @default.
- W4367186160 hasAuthorship W4367186160A5033284348 @default.
- W4367186160 hasConcept C108583219 @default.
- W4367186160 hasConcept C119857082 @default.
- W4367186160 hasConcept C147789679 @default.
- W4367186160 hasConcept C149635348 @default.
- W4367186160 hasConcept C150899416 @default.
- W4367186160 hasConcept C154945302 @default.