Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367187771> ?p ?o ?g. }
- W4367187771 endingPage "101978" @default.
- W4367187771 startingPage "101978" @default.
- W4367187771 abstract "Operator attention failure due to mental fatigue during extended equipment operations is a common cause of equipment-related accidents that result in catastrophic injuries and fatalities. As a result, tracking operators' mental fatigue is critical to reducing equipment-related accidents on construction sites. Previously, several strategies aimed at recognizing mental fatigue with adequate accuracy, such as machine learning utilizing EEG-based wearable sensing systems, have been proposed. However, the ability to track operators’ mental fatigue for its implementation on an actual construction site is still an issue. For instance, the mobility and systemic instability of EEG sensors necessitate their application in laboratory settings rather than on actual construction sites. Furthermore, while the machine learning classifiers achieved acceptable accuracy, their input is limited to manually developed EEG features, which may compromise the models’ performance on real construction sites. Accordingly, the current research proposes the viability of a construction site strategy that uses flexible headband-based sensors for acquiring raw EEG data and deep learning networks to recognize operators' mental fatigue. To serve this purpose, a one-hour excavator operation by fifteen operators was conducted on a construction site. The NASA-TLX score was used as the ground truth of mental fatigue, and brain activity patterns were recorded using a wearable EEG sensor. The raw EEG data was then used to develop deep learning-based classification models. Finally, the performance of deep learning models, i.e., long short-term memory, bidirectional LSTM, and one-dimensional convolutional networks, was investigated using accuracy, precision, recall, specificity, and an F1-score. The findings indicate that the Bi-LSTM model outperforms the other deep learning models with a high accuracy of 99.941% and F1-score between 99.917% and 99.993%. These findings demonstrate the feasibility of applying the Bi-LSTM model and contribute to wearable sensor-based mental fatigue recognition and classification, thus enhancing on-site health and safety operations." @default.
- W4367187771 created "2023-04-28" @default.
- W4367187771 creator A5001667498 @default.
- W4367187771 creator A5007896206 @default.
- W4367187771 creator A5013795174 @default.
- W4367187771 creator A5014209333 @default.
- W4367187771 creator A5017641533 @default.
- W4367187771 creator A5056693482 @default.
- W4367187771 creator A5061717035 @default.
- W4367187771 creator A5081635469 @default.
- W4367187771 date "2023-04-01" @default.
- W4367187771 modified "2023-09-25" @default.
- W4367187771 title "Deep learning-based construction equipment operators’ mental fatigue classification using wearable EEG sensor data" @default.
- W4367187771 cites W119403003 @default.
- W4367187771 cites W1968155961 @default.
- W4367187771 cites W1968857094 @default.
- W4367187771 cites W1974330408 @default.
- W4367187771 cites W1997040277 @default.
- W4367187771 cites W2007846443 @default.
- W4367187771 cites W2019883359 @default.
- W4367187771 cites W2035305937 @default.
- W4367187771 cites W2064675550 @default.
- W4367187771 cites W2070199076 @default.
- W4367187771 cites W2072418107 @default.
- W4367187771 cites W2089057387 @default.
- W4367187771 cites W2095310269 @default.
- W4367187771 cites W2104726612 @default.
- W4367187771 cites W2109606373 @default.
- W4367187771 cites W2110285718 @default.
- W4367187771 cites W2141309263 @default.
- W4367187771 cites W2146182319 @default.
- W4367187771 cites W2148080836 @default.
- W4367187771 cites W2151905266 @default.
- W4367187771 cites W2195342085 @default.
- W4367187771 cites W2270470215 @default.
- W4367187771 cites W2324743036 @default.
- W4367187771 cites W2325648542 @default.
- W4367187771 cites W2371731424 @default.
- W4367187771 cites W2402527940 @default.
- W4367187771 cites W2402691380 @default.
- W4367187771 cites W2513828988 @default.
- W4367187771 cites W2529320298 @default.
- W4367187771 cites W2559870345 @default.
- W4367187771 cites W2563742216 @default.
- W4367187771 cites W2569897526 @default.
- W4367187771 cites W2593144425 @default.
- W4367187771 cites W2601591590 @default.
- W4367187771 cites W2732174748 @default.
- W4367187771 cites W2737404945 @default.
- W4367187771 cites W2761891891 @default.
- W4367187771 cites W2762779464 @default.
- W4367187771 cites W2790722345 @default.
- W4367187771 cites W2795890722 @default.
- W4367187771 cites W2800154372 @default.
- W4367187771 cites W2800911105 @default.
- W4367187771 cites W2804879845 @default.
- W4367187771 cites W2807107191 @default.
- W4367187771 cites W2807524661 @default.
- W4367187771 cites W2883597459 @default.
- W4367187771 cites W2885544407 @default.
- W4367187771 cites W2886729234 @default.
- W4367187771 cites W2889494142 @default.
- W4367187771 cites W2891457579 @default.
- W4367187771 cites W2906110081 @default.
- W4367187771 cites W2906305053 @default.
- W4367187771 cites W2907003021 @default.
- W4367187771 cites W2911273932 @default.
- W4367187771 cites W2915893085 @default.
- W4367187771 cites W2917160625 @default.
- W4367187771 cites W2917618968 @default.
- W4367187771 cites W2919115771 @default.
- W4367187771 cites W2942698654 @default.
- W4367187771 cites W2945153480 @default.
- W4367187771 cites W2945557339 @default.
- W4367187771 cites W2946708055 @default.
- W4367187771 cites W2952144336 @default.
- W4367187771 cites W2952469820 @default.
- W4367187771 cites W2953666947 @default.
- W4367187771 cites W2954948187 @default.
- W4367187771 cites W2955657592 @default.
- W4367187771 cites W2963355311 @default.
- W4367187771 cites W2969950285 @default.
- W4367187771 cites W2977691951 @default.
- W4367187771 cites W2981813147 @default.
- W4367187771 cites W2989319645 @default.
- W4367187771 cites W2990555792 @default.
- W4367187771 cites W2994209668 @default.
- W4367187771 cites W2998984254 @default.
- W4367187771 cites W3001712148 @default.
- W4367187771 cites W3006614456 @default.
- W4367187771 cites W3007075806 @default.
- W4367187771 cites W3007171225 @default.
- W4367187771 cites W3012383032 @default.
- W4367187771 cites W3017708818 @default.
- W4367187771 cites W3024620277 @default.
- W4367187771 cites W3036607464 @default.
- W4367187771 cites W3080576765 @default.
- W4367187771 cites W3081247954 @default.