Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367187813> ?p ?o ?g. }
- W4367187813 endingPage "108777" @default.
- W4367187813 startingPage "108777" @default.
- W4367187813 abstract "Raman spectroscopic technique is a sensitive and non-destructive technique for structural analysis. However, Raman scattering is an unfavorable process, and the signals are weak, resulting in a low signal-to-noise ratio of spectra, making Raman spectroscopy challenging to gain popularity and implement. As a simple and practical approach, denoising techniques could improve the signal-to-noise ratio, which can help researchers extract information more effectively to reflect the configuration, content, and changes of test samples. However, addressing this issue with traditional algorithms is often challenging due to increased complexity and requirements in Raman spectra denoising. While some deep learning–based approaches enhance the signal-to-noise ratio, obtaining excellent performance models with good generalization is not easy when dealing with real-world tasks. This paper proposes a method of good generalization, robust, and denoising performance by using a convolutional neural network based on a new augmented method and a multi-scale feature extraction fusion block called the multi-scale feature extraction denoising (MFED) model. Specifically, first, we addressed insufficient training data using a new augmented approach through simulation of the Raman data acquisition and, in turn, improved generalization of the MFED model. Subsequently, the mixed Poisson-Gaussian noise model showed commendable robustness when dealing with synthetic and real noise data. Finally, a feature extraction block based on a multi-scale fusion significantly improved denoising effects. The comparison results of different denoising methods demonstrated the good applicability and superiority of the proposed approach. More importantly, the main advantage of the proposed MFED model is that it is easily applicable. We demonstrate that applying MFED as a pre-processing technique for Raman spectra can enhance the prediction accuracy of soybean oil concentration in olive oil. Furthermore, despite the integration time dropping from 3 to 1 s, we still yielded good quality images following MFED model denoising processing on point-scan Raman spectral imaging of cervical cancer cells. The proposed MFED model provides an excellent candidate for increasing the Raman SNR, which can contribute substantially to the application of Raman analytics in research and practices." @default.
- W4367187813 created "2023-04-28" @default.
- W4367187813 creator A5006822602 @default.
- W4367187813 creator A5023226779 @default.
- W4367187813 creator A5057776894 @default.
- W4367187813 creator A5080659687 @default.
- W4367187813 date "2023-08-01" @default.
- W4367187813 modified "2023-10-14" @default.
- W4367187813 title "Modified denoising method of Raman spectra-based deep learning for Raman semi-quantitative analysis and imaging" @default.
- W4367187813 cites W1577860048 @default.
- W4367187813 cites W1988436504 @default.
- W4367187813 cites W1993648443 @default.
- W4367187813 cites W2016365402 @default.
- W4367187813 cites W2036563717 @default.
- W4367187813 cites W2069583632 @default.
- W4367187813 cites W2070137508 @default.
- W4367187813 cites W2084218274 @default.
- W4367187813 cites W2117806618 @default.
- W4367187813 cites W2147245147 @default.
- W4367187813 cites W2156880059 @default.
- W4367187813 cites W2316638743 @default.
- W4367187813 cites W2369261734 @default.
- W4367187813 cites W2494566811 @default.
- W4367187813 cites W2508457857 @default.
- W4367187813 cites W2607141745 @default.
- W4367187813 cites W2747500034 @default.
- W4367187813 cites W2790322107 @default.
- W4367187813 cites W2921595853 @default.
- W4367187813 cites W2947965103 @default.
- W4367187813 cites W2975543744 @default.
- W4367187813 cites W2980953066 @default.
- W4367187813 cites W3001461994 @default.
- W4367187813 cites W3015399758 @default.
- W4367187813 cites W3035412539 @default.
- W4367187813 cites W3048572280 @default.
- W4367187813 cites W3096281486 @default.
- W4367187813 cites W3120420778 @default.
- W4367187813 cites W3130814454 @default.
- W4367187813 cites W3141947086 @default.
- W4367187813 cites W3146257408 @default.
- W4367187813 cites W3177806325 @default.
- W4367187813 cites W3209060507 @default.
- W4367187813 cites W3212784736 @default.
- W4367187813 cites W3217407136 @default.
- W4367187813 cites W3217467689 @default.
- W4367187813 cites W4206390848 @default.
- W4367187813 cites W4210255770 @default.
- W4367187813 cites W4281655435 @default.
- W4367187813 cites W4294817154 @default.
- W4367187813 cites W4296551003 @default.
- W4367187813 doi "https://doi.org/10.1016/j.microc.2023.108777" @default.
- W4367187813 hasPublicationYear "2023" @default.
- W4367187813 type Work @default.
- W4367187813 citedByCount "0" @default.
- W4367187813 crossrefType "journal-article" @default.
- W4367187813 hasAuthorship W4367187813A5006822602 @default.
- W4367187813 hasAuthorship W4367187813A5023226779 @default.
- W4367187813 hasAuthorship W4367187813A5057776894 @default.
- W4367187813 hasAuthorship W4367187813A5080659687 @default.
- W4367187813 hasConcept C104317684 @default.
- W4367187813 hasConcept C115961682 @default.
- W4367187813 hasConcept C119857082 @default.
- W4367187813 hasConcept C120665830 @default.
- W4367187813 hasConcept C121332964 @default.
- W4367187813 hasConcept C134306372 @default.
- W4367187813 hasConcept C138885662 @default.
- W4367187813 hasConcept C153180895 @default.
- W4367187813 hasConcept C154945302 @default.
- W4367187813 hasConcept C163294075 @default.
- W4367187813 hasConcept C177148314 @default.
- W4367187813 hasConcept C185592680 @default.
- W4367187813 hasConcept C2776401178 @default.
- W4367187813 hasConcept C33923547 @default.
- W4367187813 hasConcept C40003534 @default.
- W4367187813 hasConcept C41008148 @default.
- W4367187813 hasConcept C41895202 @default.
- W4367187813 hasConcept C52622490 @default.
- W4367187813 hasConcept C55493867 @default.
- W4367187813 hasConcept C63479239 @default.
- W4367187813 hasConcept C99498987 @default.
- W4367187813 hasConceptScore W4367187813C104317684 @default.
- W4367187813 hasConceptScore W4367187813C115961682 @default.
- W4367187813 hasConceptScore W4367187813C119857082 @default.
- W4367187813 hasConceptScore W4367187813C120665830 @default.
- W4367187813 hasConceptScore W4367187813C121332964 @default.
- W4367187813 hasConceptScore W4367187813C134306372 @default.
- W4367187813 hasConceptScore W4367187813C138885662 @default.
- W4367187813 hasConceptScore W4367187813C153180895 @default.
- W4367187813 hasConceptScore W4367187813C154945302 @default.
- W4367187813 hasConceptScore W4367187813C163294075 @default.
- W4367187813 hasConceptScore W4367187813C177148314 @default.
- W4367187813 hasConceptScore W4367187813C185592680 @default.
- W4367187813 hasConceptScore W4367187813C2776401178 @default.
- W4367187813 hasConceptScore W4367187813C33923547 @default.
- W4367187813 hasConceptScore W4367187813C40003534 @default.
- W4367187813 hasConceptScore W4367187813C41008148 @default.
- W4367187813 hasConceptScore W4367187813C41895202 @default.
- W4367187813 hasConceptScore W4367187813C52622490 @default.