Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367280212> ?p ?o ?g. }
- W4367280212 endingPage "16906" @default.
- W4367280212 startingPage "16895" @default.
- W4367280212 abstract "The goal of this study is to offer a novel fog data prediction and recovery (FDPR) algorithm that uses deep learning (DL) to forecast and recover missing sensor data in an internet of things (IoT) network. Because of the fog layer’s unique qualities compared to other IoT environment layers, the FDPR algorithm is employed in this layer. The most recent studies generally concentrate on data recovery or prediction, with few assessment metrics. In this work, an algorithm that can handle both data prediction and recovery is provided. With the proposed FDPR approach, data prediction and recovery are dealt with by an effective DL network, namely a deep concatenated multilayer perceptron (DC-MLP). The algorithm consists of a prediction function that forecasts future sensor data for a specified round of data transmission and a recovery function that recover one or two missing data points. The evaluation of the proposed algorithm is performed with simulation and experimental works. Initially, a dataset is collected, preprocessed, and fed to various DL models using K-fold cross-validation. These DL models are then converted and embedded into a fog layer in the experimental work with nine-edge devices. In both simulation and experimental evaluation, the FDPR with DC-MLP can predict future data and recover missing data with an average accuracy of 99.89% while slightly increasing network delay by 2.5 ms compared to traditional IoT. Aside from a slightly increased delay, a 121% improvement in IoT device lifetime is achieved using the FDPR algorithm due to data transmission reduction." @default.
- W4367280212 created "2023-04-29" @default.
- W4367280212 creator A5031024405 @default.
- W4367280212 creator A5076492731 @default.
- W4367280212 creator A5078533150 @default.
- W4367280212 creator A5086692154 @default.
- W4367280212 creator A5088661374 @default.
- W4367280212 date "2023-10-01" @default.
- W4367280212 modified "2023-09-27" @default.
- W4367280212 title "FDPR: A Novel Fog Data Prediction and Recovery using Efficient DL in IoT Networks" @default.
- W4367280212 cites W1965468691 @default.
- W4367280212 cites W2038194220 @default.
- W4367280212 cites W2102148524 @default.
- W4367280212 cites W2527609330 @default.
- W4367280212 cites W2594788700 @default.
- W4367280212 cites W2735493744 @default.
- W4367280212 cites W2754987233 @default.
- W4367280212 cites W2802452195 @default.
- W4367280212 cites W2898800777 @default.
- W4367280212 cites W2908437249 @default.
- W4367280212 cites W2910647020 @default.
- W4367280212 cites W2938008965 @default.
- W4367280212 cites W2945044133 @default.
- W4367280212 cites W2951182987 @default.
- W4367280212 cites W2967842289 @default.
- W4367280212 cites W2969534742 @default.
- W4367280212 cites W2971544482 @default.
- W4367280212 cites W3002493224 @default.
- W4367280212 cites W3004207920 @default.
- W4367280212 cites W3015625684 @default.
- W4367280212 cites W3028893917 @default.
- W4367280212 cites W3036773213 @default.
- W4367280212 cites W3037951940 @default.
- W4367280212 cites W3097855118 @default.
- W4367280212 cites W3103145119 @default.
- W4367280212 cites W3105640742 @default.
- W4367280212 cites W3109365969 @default.
- W4367280212 cites W3128699734 @default.
- W4367280212 cites W3135141542 @default.
- W4367280212 cites W3136030217 @default.
- W4367280212 cites W3164721774 @default.
- W4367280212 cites W3182706339 @default.
- W4367280212 cites W3199886050 @default.
- W4367280212 cites W3213410040 @default.
- W4367280212 cites W3216561607 @default.
- W4367280212 cites W4211041919 @default.
- W4367280212 cites W4318589291 @default.
- W4367280212 cites W4319595903 @default.
- W4367280212 doi "https://doi.org/10.1109/jiot.2023.3271026" @default.
- W4367280212 hasPublicationYear "2023" @default.
- W4367280212 type Work @default.
- W4367280212 citedByCount "1" @default.
- W4367280212 countsByYear W43672802122023 @default.
- W4367280212 crossrefType "journal-article" @default.
- W4367280212 hasAuthorship W4367280212A5031024405 @default.
- W4367280212 hasAuthorship W4367280212A5076492731 @default.
- W4367280212 hasAuthorship W4367280212A5078533150 @default.
- W4367280212 hasAuthorship W4367280212A5086692154 @default.
- W4367280212 hasAuthorship W4367280212A5088661374 @default.
- W4367280212 hasConcept C11413529 @default.
- W4367280212 hasConcept C119857082 @default.
- W4367280212 hasConcept C124101348 @default.
- W4367280212 hasConcept C154945302 @default.
- W4367280212 hasConcept C31258907 @default.
- W4367280212 hasConcept C41008148 @default.
- W4367280212 hasConcept C45804977 @default.
- W4367280212 hasConcept C50644808 @default.
- W4367280212 hasConcept C557945733 @default.
- W4367280212 hasConcept C60908668 @default.
- W4367280212 hasConcept C67186912 @default.
- W4367280212 hasConcept C761482 @default.
- W4367280212 hasConcept C76155785 @default.
- W4367280212 hasConcept C77088390 @default.
- W4367280212 hasConcept C79403827 @default.
- W4367280212 hasConcept C9357733 @default.
- W4367280212 hasConceptScore W4367280212C11413529 @default.
- W4367280212 hasConceptScore W4367280212C119857082 @default.
- W4367280212 hasConceptScore W4367280212C124101348 @default.
- W4367280212 hasConceptScore W4367280212C154945302 @default.
- W4367280212 hasConceptScore W4367280212C31258907 @default.
- W4367280212 hasConceptScore W4367280212C41008148 @default.
- W4367280212 hasConceptScore W4367280212C45804977 @default.
- W4367280212 hasConceptScore W4367280212C50644808 @default.
- W4367280212 hasConceptScore W4367280212C557945733 @default.
- W4367280212 hasConceptScore W4367280212C60908668 @default.
- W4367280212 hasConceptScore W4367280212C67186912 @default.
- W4367280212 hasConceptScore W4367280212C761482 @default.
- W4367280212 hasConceptScore W4367280212C76155785 @default.
- W4367280212 hasConceptScore W4367280212C77088390 @default.
- W4367280212 hasConceptScore W4367280212C79403827 @default.
- W4367280212 hasConceptScore W4367280212C9357733 @default.
- W4367280212 hasFunder F4320322120 @default.
- W4367280212 hasFunder F4320328359 @default.
- W4367280212 hasIssue "19" @default.
- W4367280212 hasLocation W43672802121 @default.
- W4367280212 hasOpenAccess W4367280212 @default.
- W4367280212 hasPrimaryLocation W43672802121 @default.
- W4367280212 hasRelatedWork W1501213224 @default.