Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367285270> ?p ?o ?g. }
- W4367285270 endingPage "e43311" @default.
- W4367285270 startingPage "e43311" @default.
- W4367285270 abstract "Background Communication is a crucial element of every health care profession, rendering communication skills training in all health care professions as being of great importance. Technological advances such as artificial intelligence (AI) and particularly machine learning (ML) may support this cause: it may provide students with an opportunity for easily accessible and readily available communication training. Objective This scoping review aimed to summarize the status quo regarding the use of AI or ML in the acquisition of communication skills in academic health care professions. Methods We conducted a comprehensive literature search across the PubMed, Scopus, Cochrane Library, Web of Science Core Collection, and CINAHL databases to identify articles that covered the use of AI or ML in communication skills training of undergraduate students pursuing health care profession education. Using an inductive approach, the included studies were organized into distinct categories. The specific characteristics of the studies, methods and techniques used by AI or ML applications, and main outcomes of the studies were evaluated. Furthermore, supporting and hindering factors in the use of AI and ML for communication skills training of health care professionals were outlined. Results The titles and abstracts of 385 studies were identified, of which 29 (7.5%) underwent full-text review. Of the 29 studies, based on the inclusion and exclusion criteria, 12 (3.1%) were included. The studies were organized into 3 distinct categories: studies using AI and ML for text analysis and information extraction, studies using AI and ML and virtual reality, and studies using AI and ML and the simulation of virtual patients, each within the academic training of the communication skills of health care professionals. Within these thematic domains, AI was also used for the provision of feedback. The motivation of the involved agents played a major role in the implementation process. Reported barriers to the use of AI and ML in communication skills training revolved around the lack of authenticity and limited natural flow of language exhibited by the AI- and ML-based virtual patient systems. Furthermore, the use of educational AI- and ML-based systems in communication skills training for health care professionals is currently limited to only a few cases, topics, and clinical domains. Conclusions The use of AI and ML in communication skills training for health care professionals is clearly a growing and promising field with a potential to render training more cost-effective and less time-consuming. Furthermore, it may serve learners as an individualized and readily available exercise method. However, in most cases, the outlined applications and technical solutions are limited in terms of access, possible scenarios, the natural flow of a conversation, and authenticity. These issues still stand in the way of any widespread implementation ambitions." @default.
- W4367285270 created "2023-04-29" @default.
- W4367285270 creator A5045782540 @default.
- W4367285270 creator A5066986591 @default.
- W4367285270 creator A5082913257 @default.
- W4367285270 date "2023-06-19" @default.
- W4367285270 modified "2023-10-18" @default.
- W4367285270 title "Artificial Intelligence Supporting the Training of Communication Skills in the Education of Health Care Professions: Scoping Review" @default.
- W4367285270 cites W1484431774 @default.
- W4367285270 cites W1811304023 @default.
- W4367285270 cites W1972898284 @default.
- W4367285270 cites W1983494385 @default.
- W4367285270 cites W1988838179 @default.
- W4367285270 cites W2007243182 @default.
- W4367285270 cites W2029543026 @default.
- W4367285270 cites W2032830500 @default.
- W4367285270 cites W2058562152 @default.
- W4367285270 cites W2080787958 @default.
- W4367285270 cites W2086797813 @default.
- W4367285270 cites W2096119795 @default.
- W4367285270 cites W2135469914 @default.
- W4367285270 cites W2158973784 @default.
- W4367285270 cites W2159792496 @default.
- W4367285270 cites W2163874445 @default.
- W4367285270 cites W219302765 @default.
- W4367285270 cites W2345106796 @default.
- W4367285270 cites W2345429978 @default.
- W4367285270 cites W2520388774 @default.
- W4367285270 cites W2560203405 @default.
- W4367285270 cites W2606429998 @default.
- W4367285270 cites W2735580341 @default.
- W4367285270 cites W2749701213 @default.
- W4367285270 cites W2786219224 @default.
- W4367285270 cites W2886357456 @default.
- W4367285270 cites W2891378911 @default.
- W4367285270 cites W2899876413 @default.
- W4367285270 cites W2904990534 @default.
- W4367285270 cites W2911057304 @default.
- W4367285270 cites W2912446109 @default.
- W4367285270 cites W2915338402 @default.
- W4367285270 cites W2951192900 @default.
- W4367285270 cites W2953532875 @default.
- W4367285270 cites W2954540457 @default.
- W4367285270 cites W2955088691 @default.
- W4367285270 cites W2958402157 @default.
- W4367285270 cites W2962185938 @default.
- W4367285270 cites W2969912247 @default.
- W4367285270 cites W2971301364 @default.
- W4367285270 cites W2981287259 @default.
- W4367285270 cites W2981296841 @default.
- W4367285270 cites W2984987441 @default.
- W4367285270 cites W2999911199 @default.
- W4367285270 cites W3026790891 @default.
- W4367285270 cites W3048489732 @default.
- W4367285270 cites W3083734812 @default.
- W4367285270 cites W3109650690 @default.
- W4367285270 cites W3139009262 @default.
- W4367285270 cites W3206229798 @default.
- W4367285270 cites W4200440018 @default.
- W4367285270 cites W4200487260 @default.
- W4367285270 cites W4229439648 @default.
- W4367285270 cites W4281259099 @default.
- W4367285270 cites W4281635691 @default.
- W4367285270 cites W4281733063 @default.
- W4367285270 cites W4282040792 @default.
- W4367285270 cites W4282914863 @default.
- W4367285270 cites W4282929131 @default.
- W4367285270 cites W4308548596 @default.
- W4367285270 cites W4312087283 @default.
- W4367285270 cites W4312103144 @default.
- W4367285270 cites W4315928987 @default.
- W4367285270 cites W4318913281 @default.
- W4367285270 cites W4327680702 @default.
- W4367285270 doi "https://doi.org/10.2196/43311" @default.
- W4367285270 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37335593" @default.
- W4367285270 hasPublicationYear "2023" @default.
- W4367285270 type Work @default.
- W4367285270 citedByCount "0" @default.
- W4367285270 crossrefType "journal-article" @default.
- W4367285270 hasAuthorship W4367285270A5045782540 @default.
- W4367285270 hasAuthorship W4367285270A5066986591 @default.
- W4367285270 hasAuthorship W4367285270A5082913257 @default.
- W4367285270 hasBestOaLocation W43672852701 @default.
- W4367285270 hasConcept C109359841 @default.
- W4367285270 hasConcept C142724271 @default.
- W4367285270 hasConcept C154945302 @default.
- W4367285270 hasConcept C15744967 @default.
- W4367285270 hasConcept C159110408 @default.
- W4367285270 hasConcept C160735492 @default.
- W4367285270 hasConcept C162324750 @default.
- W4367285270 hasConcept C17744445 @default.
- W4367285270 hasConcept C199539241 @default.
- W4367285270 hasConcept C204787440 @default.
- W4367285270 hasConcept C27415008 @default.
- W4367285270 hasConcept C2776478404 @default.
- W4367285270 hasConcept C2779473830 @default.
- W4367285270 hasConcept C2781145037 @default.
- W4367285270 hasConcept C41008148 @default.