Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367300120> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4367300120 endingPage "20" @default.
- W4367300120 startingPage "13" @default.
- W4367300120 abstract "There are coordinated attempts to use Data Science in disaster risk reduction (DRR) across the world. Different special interest groups are formed within the data science community to formulate different action plans and strategies to use data science in the DRR. Some examples of community-driven initiatives are the CODATA Task Group FAIR Data for Disaster Risk Research (FAIR-DRR), CODATA Task Group Linked Open Data for Global Disaster Risk Research (LODGD), and ISC Integrated Research on Disaster Risk (IRDR). This chapter highlights the data science approaches, models, frameworks, and stakeholders mapping while dealing with the data collection, analysis, and reporting for strengthening data-driven decision-making at different levels. The chapter also explores the FAIR Data Principles that aim at achieving the findable, accessible, interoperable, and reusable data resources at the institutional and national levels. FAIR Data ensures various data users increasingly engage with data related to disasters. We also discuss some case studies and success stories from the Global South, which may inspire other countries in data-driven decision-making while dealing with natural disasters. The much-discussed “Data, Information, Knowledge and Action” (DIKA) model is highlighted in this chapter. For example, the recently launched “Data-Knowledge-Action for Urban Systems” podcast series of CODATA and CEPT Research and Development Foundation (CRDF) in Ahmedabad, talks about how the DIKA model helps in creating intelligent systems for DRR using scientific and quantitative data. On a podcast in related Series, the DRR practitioners and data science researchers discussed the use of big data to predict natural disasters. This chapter highlights notable examples of how big data helped predict natural disasters across the world, particularly in the Global South." @default.
- W4367300120 created "2023-04-29" @default.
- W4367300120 creator A5032333496 @default.
- W4367300120 creator A5043104149 @default.
- W4367300120 date "2023-04-27" @default.
- W4367300120 modified "2023-10-14" @default.
- W4367300120 title "Promoting Data Science in Disaster Risk Reduction: Glimpses from the Global South" @default.
- W4367300120 doi "https://doi.org/10.5530/jcitation.2.1.2" @default.
- W4367300120 hasPublicationYear "2023" @default.
- W4367300120 type Work @default.
- W4367300120 citedByCount "0" @default.
- W4367300120 crossrefType "journal-article" @default.
- W4367300120 hasAuthorship W4367300120A5032333496 @default.
- W4367300120 hasAuthorship W4367300120A5043104149 @default.
- W4367300120 hasBestOaLocation W43673001201 @default.
- W4367300120 hasConcept C121332964 @default.
- W4367300120 hasConcept C124101348 @default.
- W4367300120 hasConcept C127413603 @default.
- W4367300120 hasConcept C136764020 @default.
- W4367300120 hasConcept C153294291 @default.
- W4367300120 hasConcept C20136886 @default.
- W4367300120 hasConcept C201995342 @default.
- W4367300120 hasConcept C205649164 @default.
- W4367300120 hasConcept C2522767166 @default.
- W4367300120 hasConcept C2776965509 @default.
- W4367300120 hasConcept C2780451532 @default.
- W4367300120 hasConcept C2780535194 @default.
- W4367300120 hasConcept C2780750338 @default.
- W4367300120 hasConcept C2780791683 @default.
- W4367300120 hasConcept C41008148 @default.
- W4367300120 hasConcept C56739046 @default.
- W4367300120 hasConcept C62520636 @default.
- W4367300120 hasConcept C75684735 @default.
- W4367300120 hasConcept C91375879 @default.
- W4367300120 hasConceptScore W4367300120C121332964 @default.
- W4367300120 hasConceptScore W4367300120C124101348 @default.
- W4367300120 hasConceptScore W4367300120C127413603 @default.
- W4367300120 hasConceptScore W4367300120C136764020 @default.
- W4367300120 hasConceptScore W4367300120C153294291 @default.
- W4367300120 hasConceptScore W4367300120C20136886 @default.
- W4367300120 hasConceptScore W4367300120C201995342 @default.
- W4367300120 hasConceptScore W4367300120C205649164 @default.
- W4367300120 hasConceptScore W4367300120C2522767166 @default.
- W4367300120 hasConceptScore W4367300120C2776965509 @default.
- W4367300120 hasConceptScore W4367300120C2780451532 @default.
- W4367300120 hasConceptScore W4367300120C2780535194 @default.
- W4367300120 hasConceptScore W4367300120C2780750338 @default.
- W4367300120 hasConceptScore W4367300120C2780791683 @default.
- W4367300120 hasConceptScore W4367300120C41008148 @default.
- W4367300120 hasConceptScore W4367300120C56739046 @default.
- W4367300120 hasConceptScore W4367300120C62520636 @default.
- W4367300120 hasConceptScore W4367300120C75684735 @default.
- W4367300120 hasConceptScore W4367300120C91375879 @default.
- W4367300120 hasIssue "1" @default.
- W4367300120 hasLocation W43673001201 @default.
- W4367300120 hasOpenAccess W4367300120 @default.
- W4367300120 hasPrimaryLocation W43673001201 @default.
- W4367300120 hasRelatedWork W1935138864 @default.
- W4367300120 hasRelatedWork W2271366536 @default.
- W4367300120 hasRelatedWork W2746769827 @default.
- W4367300120 hasRelatedWork W2783291455 @default.
- W4367300120 hasRelatedWork W2805934830 @default.
- W4367300120 hasRelatedWork W2965260787 @default.
- W4367300120 hasRelatedWork W3115048026 @default.
- W4367300120 hasRelatedWork W3128533319 @default.
- W4367300120 hasRelatedWork W3158860697 @default.
- W4367300120 hasRelatedWork W4312064828 @default.
- W4367300120 hasVolume "2" @default.
- W4367300120 isParatext "false" @default.
- W4367300120 isRetracted "false" @default.
- W4367300120 workType "article" @default.