Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367302593> ?p ?o ?g. }
- W4367302593 endingPage "118966" @default.
- W4367302593 startingPage "118966" @default.
- W4367302593 abstract "Conditional microstructure generation tools offer an important, inexpensive pathway to constructing statistically diverse datasets for Integrated Computational Materials Engineering and Materials Informatics efforts. To provide this utility in practice, an ideal generative framework must be able to efficiently, systematically, and robustly generate microstructures corresponding to selected spatial statistics (e.g., 1- and 2-point statistics) while also producing realistic local features (e.g., shapes and sizes of individual phase constituents). Because of the austerity of these requirements, generative frameworks often target either statistical conditioning or visual realism, but not both. In this paper, we propose to bridge these two approaches by approximating a microstructure’s generating process (i.e., its stochastic microstructure function) using a two layer semi-directed probabilistic graphical model. The first layer – a Gaussian Random Field (GRF) – provides direct control of the 1- and 2-point statistics. The second layer – a Score Based Generative Deep Learning model – postprocesses GRF predictions to refine local features while preserving global patterning. To understand and evaluate our proposed framework, we apply it to generate statistically equivalent N-phase microstructures from experimental references, including a 2-Phase Nickel-based Super Alloy and a 3-phase α−β Titanium alloy. Through these two case studies, we demonstrate that our framework successfully matches both lower-order (1- and 2-point statistics) and several salient higher-order statistics. Additionally, we briefly explore the capacity of these models to extrapolate outside of their training data by varying the input 2-point statistics. We discuss the value of this ability towards systematically generating diverse microstructure datasets." @default.
- W4367302593 created "2023-04-29" @default.
- W4367302593 creator A5008527954 @default.
- W4367302593 creator A5021020884 @default.
- W4367302593 creator A5044119132 @default.
- W4367302593 creator A5088816007 @default.
- W4367302593 date "2023-07-01" @default.
- W4367302593 modified "2023-10-14" @default.
- W4367302593 title "Local–Global Decompositions for Conditional Microstructure Generation" @default.
- W4367302593 cites W1797257056 @default.
- W4367302593 cites W1805577933 @default.
- W4367302593 cites W1971910527 @default.
- W4367302593 cites W1983379330 @default.
- W4367302593 cites W1986180240 @default.
- W4367302593 cites W1987091162 @default.
- W4367302593 cites W1993304724 @default.
- W4367302593 cites W1994677378 @default.
- W4367302593 cites W1997425132 @default.
- W4367302593 cites W2003228695 @default.
- W4367302593 cites W2011163643 @default.
- W4367302593 cites W2012589633 @default.
- W4367302593 cites W2013035813 @default.
- W4367302593 cites W2014954027 @default.
- W4367302593 cites W2021616111 @default.
- W4367302593 cites W2024048510 @default.
- W4367302593 cites W2036058479 @default.
- W4367302593 cites W2037352004 @default.
- W4367302593 cites W2038976305 @default.
- W4367302593 cites W2046660839 @default.
- W4367302593 cites W2049904622 @default.
- W4367302593 cites W2055970364 @default.
- W4367302593 cites W2069033783 @default.
- W4367302593 cites W2071237451 @default.
- W4367302593 cites W2072176741 @default.
- W4367302593 cites W2073958030 @default.
- W4367302593 cites W2079559649 @default.
- W4367302593 cites W2082666553 @default.
- W4367302593 cites W2095157056 @default.
- W4367302593 cites W2102120659 @default.
- W4367302593 cites W2131219543 @default.
- W4367302593 cites W2152014464 @default.
- W4367302593 cites W2236357601 @default.
- W4367302593 cites W2282677563 @default.
- W4367302593 cites W2568283272 @default.
- W4367302593 cites W2593592895 @default.
- W4367302593 cites W2599810842 @default.
- W4367302593 cites W2620045026 @default.
- W4367302593 cites W2891908071 @default.
- W4367302593 cites W2891985807 @default.
- W4367302593 cites W2895637269 @default.
- W4367302593 cites W2905328281 @default.
- W4367302593 cites W2946680784 @default.
- W4367302593 cites W2954996726 @default.
- W4367302593 cites W2962403043 @default.
- W4367302593 cites W2963073614 @default.
- W4367302593 cites W2963091558 @default.
- W4367302593 cites W2963173533 @default.
- W4367302593 cites W2963800363 @default.
- W4367302593 cites W2965478527 @default.
- W4367302593 cites W2965720422 @default.
- W4367302593 cites W2972352850 @default.
- W4367302593 cites W2984282305 @default.
- W4367302593 cites W2992005611 @default.
- W4367302593 cites W2998562191 @default.
- W4367302593 cites W2999604263 @default.
- W4367302593 cites W3012496101 @default.
- W4367302593 cites W3025658083 @default.
- W4367302593 cites W3047371674 @default.
- W4367302593 cites W3099448359 @default.
- W4367302593 cites W3103586216 @default.
- W4367302593 cites W3106943391 @default.
- W4367302593 cites W3107714972 @default.
- W4367302593 cites W3112597099 @default.
- W4367302593 cites W3118620563 @default.
- W4367302593 cites W3127530679 @default.
- W4367302593 cites W3133902371 @default.
- W4367302593 cites W3138789626 @default.
- W4367302593 cites W3151042244 @default.
- W4367302593 cites W3160373943 @default.
- W4367302593 cites W3160552991 @default.
- W4367302593 cites W3171167100 @default.
- W4367302593 cites W3175961047 @default.
- W4367302593 cites W3176233674 @default.
- W4367302593 cites W3186176169 @default.
- W4367302593 cites W3187506011 @default.
- W4367302593 cites W3188832434 @default.
- W4367302593 cites W3192187195 @default.
- W4367302593 cites W3196520440 @default.
- W4367302593 cites W3203984794 @default.
- W4367302593 cites W3212386989 @default.
- W4367302593 cites W4205356152 @default.
- W4367302593 cites W4210423197 @default.
- W4367302593 cites W4220685827 @default.
- W4367302593 cites W4225400627 @default.
- W4367302593 cites W4226197071 @default.
- W4367302593 cites W4226240812 @default.
- W4367302593 cites W4281641494 @default.
- W4367302593 cites W4285384919 @default.