Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367308972> ?p ?o ?g. }
- W4367308972 abstract "The thermo-mechanical response of shock-initiated energetic materials (EM) is highly influenced by their microstructures, presenting an opportunity to engineer EM microstructure in a materials-by-design framework. However, the current design practice is limited, as a large ensemble of simulations is required to construct the complex EM structure-property-performance linkages. We present the Physics-Aware Recurrent Convolutional (PARC) Neural Network, a deep-learning algorithm capable of learning the mesoscale thermo-mechanics of EM from a modest number of high-resolution direct numerical simulations (DNS). Validation results demonstrated that PARC could predict the themo-mechanical response of shocked EM with a comparable accuracy to DNS but with notably less computation time. The physics awareness of PARC enhances its modeling capabilities and generalizability, especially when challenged in unseen prediction scenarios. We also demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM." @default.
- W4367308972 created "2023-04-29" @default.
- W4367308972 creator A5011102158 @default.
- W4367308972 creator A5041162418 @default.
- W4367308972 creator A5050917382 @default.
- W4367308972 creator A5057791578 @default.
- W4367308972 creator A5062468026 @default.
- W4367308972 creator A5089702832 @default.
- W4367308972 date "2023-04-28" @default.
- W4367308972 modified "2023-10-01" @default.
- W4367308972 title "PARC: Physics-aware recurrent convolutional neural networks to assimilate meso scale reactive mechanics of energetic materials" @default.
- W4367308972 cites W107619411 @default.
- W4367308972 cites W1585430014 @default.
- W4367308972 cites W1677182931 @default.
- W4367308972 cites W1885185971 @default.
- W4367308972 cites W1901129140 @default.
- W4367308972 cites W1912570122 @default.
- W4367308972 cites W1993904308 @default.
- W4367308972 cites W1999613968 @default.
- W4367308972 cites W2015512134 @default.
- W4367308972 cites W2044000170 @default.
- W4367308972 cites W2044384813 @default.
- W4367308972 cites W2050853133 @default.
- W4367308972 cites W2051254306 @default.
- W4367308972 cites W2064101210 @default.
- W4367308972 cites W2081634504 @default.
- W4367308972 cites W2081783886 @default.
- W4367308972 cites W2111545046 @default.
- W4367308972 cites W2144716645 @default.
- W4367308972 cites W2194775991 @default.
- W4367308972 cites W2204088464 @default.
- W4367308972 cites W2580047149 @default.
- W4367308972 cites W2608146760 @default.
- W4367308972 cites W2608876525 @default.
- W4367308972 cites W2778494576 @default.
- W4367308972 cites W2791462858 @default.
- W4367308972 cites W2803136398 @default.
- W4367308972 cites W2810011556 @default.
- W4367308972 cites W2886177874 @default.
- W4367308972 cites W2888894954 @default.
- W4367308972 cites W2899283552 @default.
- W4367308972 cites W2903660960 @default.
- W4367308972 cites W2925044042 @default.
- W4367308972 cites W2946900676 @default.
- W4367308972 cites W2951629468 @default.
- W4367308972 cites W2953144652 @default.
- W4367308972 cites W2963716063 @default.
- W4367308972 cites W2990735819 @default.
- W4367308972 cites W2991257761 @default.
- W4367308972 cites W3005221849 @default.
- W4367308972 cites W3034521206 @default.
- W4367308972 cites W3035987208 @default.
- W4367308972 cites W3047371674 @default.
- W4367308972 cites W3075485214 @default.
- W4367308972 cites W3101736545 @default.
- W4367308972 cites W3106705644 @default.
- W4367308972 cites W3120438022 @default.
- W4367308972 cites W3136388620 @default.
- W4367308972 cites W3137474564 @default.
- W4367308972 cites W3142852151 @default.
- W4367308972 cites W3163993681 @default.
- W4367308972 cites W3194953284 @default.
- W4367308972 cites W4210253147 @default.
- W4367308972 cites W4210667857 @default.
- W4367308972 cites W4243158973 @default.
- W4367308972 cites W4281716556 @default.
- W4367308972 doi "https://doi.org/10.1126/sciadv.add6868" @default.
- W4367308972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37115927" @default.
- W4367308972 hasPublicationYear "2023" @default.
- W4367308972 type Work @default.
- W4367308972 citedByCount "3" @default.
- W4367308972 countsByYear W43673089722023 @default.
- W4367308972 crossrefType "journal-article" @default.
- W4367308972 hasAuthorship W4367308972A5011102158 @default.
- W4367308972 hasAuthorship W4367308972A5041162418 @default.
- W4367308972 hasAuthorship W4367308972A5050917382 @default.
- W4367308972 hasAuthorship W4367308972A5057791578 @default.
- W4367308972 hasAuthorship W4367308972A5062468026 @default.
- W4367308972 hasAuthorship W4367308972A5089702832 @default.
- W4367308972 hasBestOaLocation W43673089721 @default.
- W4367308972 hasConcept C105795698 @default.
- W4367308972 hasConcept C108583219 @default.
- W4367308972 hasConcept C11413529 @default.
- W4367308972 hasConcept C121332964 @default.
- W4367308972 hasConcept C154945302 @default.
- W4367308972 hasConcept C27158222 @default.
- W4367308972 hasConcept C2778755073 @default.
- W4367308972 hasConcept C33923547 @default.
- W4367308972 hasConcept C41008148 @default.
- W4367308972 hasConcept C45374587 @default.
- W4367308972 hasConcept C50644808 @default.
- W4367308972 hasConcept C62520636 @default.
- W4367308972 hasConcept C66024118 @default.
- W4367308972 hasConcept C81363708 @default.
- W4367308972 hasConceptScore W4367308972C105795698 @default.
- W4367308972 hasConceptScore W4367308972C108583219 @default.
- W4367308972 hasConceptScore W4367308972C11413529 @default.
- W4367308972 hasConceptScore W4367308972C121332964 @default.
- W4367308972 hasConceptScore W4367308972C154945302 @default.
- W4367308972 hasConceptScore W4367308972C27158222 @default.