Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367309080> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4367309080 abstract "The food industry is interest to characterizing the appearance of products that are attractive and popular among the population. For that, it is important to objectively measure certain physical characteristics of food matrices to determine the consumer acceptability. It is known that computer vision has been used to measure physical and chemical characteristics in various foods, obtaining percentages of accuracy higher than 95.00 %. In Colombia, a traditional and highly consumed food is the arepa, which can be made with corn flour (yellow or white) with different preparation techniques (raw, baked or fried). In this research, the identification of the type of corn flour used and the preparation technique of arepas using computer vision was proposed. For this purpose, information was collected from 90 samples of arepas by training the Nu Support Vector Classification learning algorithm of Scikit Learn. The results obtained showed that the algorithm is able to determine both the type of corn flour and the preparation technique of the arepas. Our results show that the algorithm can determine both the flour type and preparation technique with an accuracy rate of 79 %, for fried arepas made with yellow flour, because the data set color presented similarities with fried arepas made with white flour. Regarding the percentage of white corn flour fried arepas and yellow corn baked arepas, they reflected percentages of 97.05 % and 100.00 % of correct classification of the samples, respectively. These findings suggest that computer vision can be a valuable tool for the food industry in improving the quality and rating arepas and similar food products." @default.
- W4367309080 created "2023-04-29" @default.
- W4367309080 creator A5029983352 @default.
- W4367309080 creator A5054158545 @default.
- W4367309080 creator A5063414154 @default.
- W4367309080 date "2023-03-23" @default.
- W4367309080 modified "2023-10-01" @default.
- W4367309080 title "Nu-Support Vector Classification Training for Feature Identification in Arepas: A Colombian Traditional Food" @default.
- W4367309080 cites W1592130729 @default.
- W4367309080 cites W1993561095 @default.
- W4367309080 cites W2007020941 @default.
- W4367309080 cites W2018670315 @default.
- W4367309080 cites W2061724928 @default.
- W4367309080 cites W2105089202 @default.
- W4367309080 cites W2117327270 @default.
- W4367309080 cites W2151033921 @default.
- W4367309080 cites W2461645550 @default.
- W4367309080 cites W2478082896 @default.
- W4367309080 cites W2885042349 @default.
- W4367309080 cites W3133869385 @default.
- W4367309080 cites W4212946303 @default.
- W4367309080 cites W4309726505 @default.
- W4367309080 cites W4318969186 @default.
- W4367309080 doi "https://doi.org/10.1109/atee58038.2023.10108229" @default.
- W4367309080 hasPublicationYear "2023" @default.
- W4367309080 type Work @default.
- W4367309080 citedByCount "0" @default.
- W4367309080 crossrefType "proceedings-article" @default.
- W4367309080 hasAuthorship W4367309080A5029983352 @default.
- W4367309080 hasAuthorship W4367309080A5054158545 @default.
- W4367309080 hasAuthorship W4367309080A5063414154 @default.
- W4367309080 hasConcept C116834253 @default.
- W4367309080 hasConcept C12267149 @default.
- W4367309080 hasConcept C144024400 @default.
- W4367309080 hasConcept C149923435 @default.
- W4367309080 hasConcept C153180895 @default.
- W4367309080 hasConcept C154945302 @default.
- W4367309080 hasConcept C178790620 @default.
- W4367309080 hasConcept C185592680 @default.
- W4367309080 hasConcept C206139338 @default.
- W4367309080 hasConcept C2776873940 @default.
- W4367309080 hasConcept C2908647359 @default.
- W4367309080 hasConcept C2992245215 @default.
- W4367309080 hasConcept C31903555 @default.
- W4367309080 hasConcept C33923547 @default.
- W4367309080 hasConcept C41008148 @default.
- W4367309080 hasConcept C59822182 @default.
- W4367309080 hasConcept C86803240 @default.
- W4367309080 hasConceptScore W4367309080C116834253 @default.
- W4367309080 hasConceptScore W4367309080C12267149 @default.
- W4367309080 hasConceptScore W4367309080C144024400 @default.
- W4367309080 hasConceptScore W4367309080C149923435 @default.
- W4367309080 hasConceptScore W4367309080C153180895 @default.
- W4367309080 hasConceptScore W4367309080C154945302 @default.
- W4367309080 hasConceptScore W4367309080C178790620 @default.
- W4367309080 hasConceptScore W4367309080C185592680 @default.
- W4367309080 hasConceptScore W4367309080C206139338 @default.
- W4367309080 hasConceptScore W4367309080C2776873940 @default.
- W4367309080 hasConceptScore W4367309080C2908647359 @default.
- W4367309080 hasConceptScore W4367309080C2992245215 @default.
- W4367309080 hasConceptScore W4367309080C31903555 @default.
- W4367309080 hasConceptScore W4367309080C33923547 @default.
- W4367309080 hasConceptScore W4367309080C41008148 @default.
- W4367309080 hasConceptScore W4367309080C59822182 @default.
- W4367309080 hasConceptScore W4367309080C86803240 @default.
- W4367309080 hasFunder F4320326542 @default.
- W4367309080 hasLocation W43673090801 @default.
- W4367309080 hasOpenAccess W4367309080 @default.
- W4367309080 hasPrimaryLocation W43673090801 @default.
- W4367309080 hasRelatedWork W2041399278 @default.
- W4367309080 hasRelatedWork W2099369243 @default.
- W4367309080 hasRelatedWork W2120008580 @default.
- W4367309080 hasRelatedWork W2136184105 @default.
- W4367309080 hasRelatedWork W2141705618 @default.
- W4367309080 hasRelatedWork W2153189372 @default.
- W4367309080 hasRelatedWork W2163073107 @default.
- W4367309080 hasRelatedWork W4223656335 @default.
- W4367309080 hasRelatedWork W2187500075 @default.
- W4367309080 hasRelatedWork W2345184372 @default.
- W4367309080 isParatext "false" @default.
- W4367309080 isRetracted "false" @default.
- W4367309080 workType "article" @default.