Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367309081> ?p ?o ?g. }
- W4367309081 abstract "Recent advancements in the areas of computer vision and deep learning have broadened the scope of vision-based autonomous condition assessment of civil infrastructure. However, a review of available literature suggests that most of the existing vision-based inspection techniques rely only on color information, due to the immediate availability of inexpensive high-resolution cameras. Regular cameras translate a 3D scene to a 2D space, which leads to a loss of information vis-à-vis distance and scale. This imposes a barrier to the realization of the full potential of vision-based techniques. In this regard, the structural health monitoring community is yet to benefit from the new opportunities that commercially-available low-cost depth sensors offer. This study aims at filling this knowledge gap by incorporating depth fusion into an encoder-decoder-based semantic segmentation model. Advanced computer graphics approaches are exploited to generate a database of paired RGB and depth images representing various damage categories that are commonly observed in reinforced concrete (RC) buildings, namely, spalling, spalling with exposed rebars, and severely buckled rebars. A number of encoding techniques are explored for representing the depth data. Additionally, various schemes for the data-level, feature-level, and decision-level fusions of RGB and depth data are investigated to identify the best fusion strategy. Overall, it was observed that feature-level fusion is the most effective and can enhance the performance of deep learning-based damage segmentation algorithms by up to 25% without any appreciable increase in the computation time. Moreover, a novel volumetric damage quantification approach is introduced, which is robust against perspective distortion. This study is believed to advance the frontiers of infrastructure resilience and maintenance." @default.
- W4367309081 created "2023-04-29" @default.
- W4367309081 creator A5001288130 @default.
- W4367309081 creator A5032995869 @default.
- W4367309081 creator A5077725052 @default.
- W4367309081 date "2023-07-01" @default.
- W4367309081 modified "2023-10-16" @default.
- W4367309081 title "Deep Learning-Based RGB-D Fusion for Multimodal Condition Assessment of Civil Infrastructure" @default.
- W4367309081 cites W1484974714 @default.
- W4367309081 cites W1511248543 @default.
- W4367309081 cites W1536680647 @default.
- W4367309081 cites W1922904362 @default.
- W4367309081 cites W2022909534 @default.
- W4367309081 cites W2037325199 @default.
- W4367309081 cites W2085261163 @default.
- W4367309081 cites W2108598243 @default.
- W4367309081 cites W2141200610 @default.
- W4367309081 cites W2431874326 @default.
- W4367309081 cites W2463402750 @default.
- W4367309081 cites W2485522583 @default.
- W4367309081 cites W2489780108 @default.
- W4367309081 cites W2543473292 @default.
- W4367309081 cites W2587989515 @default.
- W4367309081 cites W2591954754 @default.
- W4367309081 cites W2593768305 @default.
- W4367309081 cites W2598457882 @default.
- W4367309081 cites W2609822318 @default.
- W4367309081 cites W2614059183 @default.
- W4367309081 cites W2650354119 @default.
- W4367309081 cites W2739974641 @default.
- W4367309081 cites W2752061070 @default.
- W4367309081 cites W2765854388 @default.
- W4367309081 cites W2767068085 @default.
- W4367309081 cites W2768955070 @default.
- W4367309081 cites W2772901877 @default.
- W4367309081 cites W2799553422 @default.
- W4367309081 cites W2800346298 @default.
- W4367309081 cites W2801492038 @default.
- W4367309081 cites W2902848332 @default.
- W4367309081 cites W2905053868 @default.
- W4367309081 cites W2913368113 @default.
- W4367309081 cites W2963934993 @default.
- W4367309081 cites W2963956866 @default.
- W4367309081 cites W2964339842 @default.
- W4367309081 cites W2982863599 @default.
- W4367309081 cites W3003890779 @default.
- W4367309081 cites W3011076052 @default.
- W4367309081 cites W3042450374 @default.
- W4367309081 cites W3080432055 @default.
- W4367309081 cites W3088428216 @default.
- W4367309081 cites W3107801203 @default.
- W4367309081 cites W3159583681 @default.
- W4367309081 cites W3177427396 @default.
- W4367309081 cites W4226018613 @default.
- W4367309081 cites W4226192701 @default.
- W4367309081 cites W4293002984 @default.
- W4367309081 doi "https://doi.org/10.1061/jccee5.cpeng-5197" @default.
- W4367309081 hasPublicationYear "2023" @default.
- W4367309081 type Work @default.
- W4367309081 citedByCount "0" @default.
- W4367309081 crossrefType "journal-article" @default.
- W4367309081 hasAuthorship W4367309081A5001288130 @default.
- W4367309081 hasAuthorship W4367309081A5032995869 @default.
- W4367309081 hasAuthorship W4367309081A5077725052 @default.
- W4367309081 hasConcept C108583219 @default.
- W4367309081 hasConcept C119857082 @default.
- W4367309081 hasConcept C127413603 @default.
- W4367309081 hasConcept C138885662 @default.
- W4367309081 hasConcept C154945302 @default.
- W4367309081 hasConcept C2776401178 @default.
- W4367309081 hasConcept C31972630 @default.
- W4367309081 hasConcept C41008148 @default.
- W4367309081 hasConcept C41895202 @default.
- W4367309081 hasConcept C64355373 @default.
- W4367309081 hasConcept C66938386 @default.
- W4367309081 hasConcept C82990744 @default.
- W4367309081 hasConcept C89600930 @default.
- W4367309081 hasConceptScore W4367309081C108583219 @default.
- W4367309081 hasConceptScore W4367309081C119857082 @default.
- W4367309081 hasConceptScore W4367309081C127413603 @default.
- W4367309081 hasConceptScore W4367309081C138885662 @default.
- W4367309081 hasConceptScore W4367309081C154945302 @default.
- W4367309081 hasConceptScore W4367309081C2776401178 @default.
- W4367309081 hasConceptScore W4367309081C31972630 @default.
- W4367309081 hasConceptScore W4367309081C41008148 @default.
- W4367309081 hasConceptScore W4367309081C41895202 @default.
- W4367309081 hasConceptScore W4367309081C64355373 @default.
- W4367309081 hasConceptScore W4367309081C66938386 @default.
- W4367309081 hasConceptScore W4367309081C82990744 @default.
- W4367309081 hasConceptScore W4367309081C89600930 @default.
- W4367309081 hasIssue "4" @default.
- W4367309081 hasLocation W43673090811 @default.
- W4367309081 hasOpenAccess W4367309081 @default.
- W4367309081 hasPrimaryLocation W43673090811 @default.
- W4367309081 hasRelatedWork W1669643531 @default.
- W4367309081 hasRelatedWork W2005437358 @default.
- W4367309081 hasRelatedWork W2052518016 @default.
- W4367309081 hasRelatedWork W2283162247 @default.
- W4367309081 hasRelatedWork W2314488738 @default.
- W4367309081 hasRelatedWork W2517104666 @default.