Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367309107> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4367309107 abstract "Abstract Background: Type 2 diabetes (T2D) has been increasing recently in Taiwan which causes 43% of the total population of dialysis. In the present study, our goal was to compare the accuracy of logistic regression (LR) and gradient boosting classification (GBC) of artificial intelligence in predicting diabetes kidney disease (DKD) in a Chinese cohort. Methods: Totally, there were 365 men and 320 women with T2D enrolled and followed for four years. They were further divided into quintiles according to the estimated glomerular filtration rate (eGFR). Both LR and GBC were used to estimate the future DKD. Simple correlation was applied to evaluate the correlation between factors and eGFR at the end of follow-up (eGFR-FU). Sixty percent participants, as training group, were randomly sampled. The others were the validation group. The equations obtained from the training group of both methods are applied to calculate the receiver operation curve (ROC) of the validation group. Results: At the end of the follow-up, the eGFR-FU significantly different in both genders. The baseline eGFR is negatively related to age, duration of T2D, low density lipoprotein, ALT, systolic blood pressure, but positively related to fasting plasma glucose (FPG) and creatinine in men. In women, the relationship of FPG disappears. The ROC for LR is 0.88 and for GBC is 0.97 for men, and 0.82 and 0.94 for women, respectively. Both findings reach statistically significance. Conclusion: In conclusion, GBC could provide a better prediction compared to traditional LR in patients with T2D followed up for 4 years." @default.
- W4367309107 created "2023-04-29" @default.
- W4367309107 creator A5007360152 @default.
- W4367309107 creator A5017847363 @default.
- W4367309107 creator A5024425133 @default.
- W4367309107 creator A5034223519 @default.
- W4367309107 creator A5085523238 @default.
- W4367309107 creator A5085527914 @default.
- W4367309107 creator A5090547586 @default.
- W4367309107 date "2023-04-28" @default.
- W4367309107 modified "2023-09-23" @default.
- W4367309107 title "The Comparison of Accuracy between Traditional Logistic Regression and Gradient Boosting Classifier Model of Artificial Intelligence in Predicting Diabetes Kidney Disease in Chinese – A 4-year Longitudinal Study" @default.
- W4367309107 cites W1964132180 @default.
- W4367309107 cites W2024067944 @default.
- W4367309107 cites W2082736105 @default.
- W4367309107 cites W2088794999 @default.
- W4367309107 cites W2101508556 @default.
- W4367309107 cites W2140716320 @default.
- W4367309107 cites W2616911995 @default.
- W4367309107 cites W2809463321 @default.
- W4367309107 cites W2893457521 @default.
- W4367309107 cites W2968847082 @default.
- W4367309107 cites W2970997741 @default.
- W4367309107 cites W3005455537 @default.
- W4367309107 cites W3017142950 @default.
- W4367309107 cites W3081103314 @default.
- W4367309107 cites W3116249329 @default.
- W4367309107 cites W3197251535 @default.
- W4367309107 cites W3205979428 @default.
- W4367309107 cites W3210938746 @default.
- W4367309107 cites W3217041876 @default.
- W4367309107 cites W4299940574 @default.
- W4367309107 doi "https://doi.org/10.21203/rs.3.rs-2847847/v1" @default.
- W4367309107 hasPublicationYear "2023" @default.
- W4367309107 type Work @default.
- W4367309107 citedByCount "0" @default.
- W4367309107 crossrefType "posted-content" @default.
- W4367309107 hasAuthorship W4367309107A5007360152 @default.
- W4367309107 hasAuthorship W4367309107A5017847363 @default.
- W4367309107 hasAuthorship W4367309107A5024425133 @default.
- W4367309107 hasAuthorship W4367309107A5034223519 @default.
- W4367309107 hasAuthorship W4367309107A5085523238 @default.
- W4367309107 hasAuthorship W4367309107A5085527914 @default.
- W4367309107 hasAuthorship W4367309107A5090547586 @default.
- W4367309107 hasBestOaLocation W43673091071 @default.
- W4367309107 hasConcept C117220453 @default.
- W4367309107 hasConcept C126322002 @default.
- W4367309107 hasConcept C134018914 @default.
- W4367309107 hasConcept C151956035 @default.
- W4367309107 hasConcept C154945302 @default.
- W4367309107 hasConcept C159641895 @default.
- W4367309107 hasConcept C2524010 @default.
- W4367309107 hasConcept C2777180221 @default.
- W4367309107 hasConcept C2778653478 @default.
- W4367309107 hasConcept C2780306776 @default.
- W4367309107 hasConcept C33923547 @default.
- W4367309107 hasConcept C41008148 @default.
- W4367309107 hasConcept C46686674 @default.
- W4367309107 hasConcept C555293320 @default.
- W4367309107 hasConcept C58471807 @default.
- W4367309107 hasConcept C71924100 @default.
- W4367309107 hasConceptScore W4367309107C117220453 @default.
- W4367309107 hasConceptScore W4367309107C126322002 @default.
- W4367309107 hasConceptScore W4367309107C134018914 @default.
- W4367309107 hasConceptScore W4367309107C151956035 @default.
- W4367309107 hasConceptScore W4367309107C154945302 @default.
- W4367309107 hasConceptScore W4367309107C159641895 @default.
- W4367309107 hasConceptScore W4367309107C2524010 @default.
- W4367309107 hasConceptScore W4367309107C2777180221 @default.
- W4367309107 hasConceptScore W4367309107C2778653478 @default.
- W4367309107 hasConceptScore W4367309107C2780306776 @default.
- W4367309107 hasConceptScore W4367309107C33923547 @default.
- W4367309107 hasConceptScore W4367309107C41008148 @default.
- W4367309107 hasConceptScore W4367309107C46686674 @default.
- W4367309107 hasConceptScore W4367309107C555293320 @default.
- W4367309107 hasConceptScore W4367309107C58471807 @default.
- W4367309107 hasConceptScore W4367309107C71924100 @default.
- W4367309107 hasLocation W43673091071 @default.
- W4367309107 hasOpenAccess W4367309107 @default.
- W4367309107 hasPrimaryLocation W43673091071 @default.
- W4367309107 hasRelatedWork W1857105667 @default.
- W4367309107 hasRelatedWork W2042710484 @default.
- W4367309107 hasRelatedWork W2058466993 @default.
- W4367309107 hasRelatedWork W2101525493 @default.
- W4367309107 hasRelatedWork W2113389249 @default.
- W4367309107 hasRelatedWork W2560482142 @default.
- W4367309107 hasRelatedWork W2607916424 @default.
- W4367309107 hasRelatedWork W2614568041 @default.
- W4367309107 hasRelatedWork W2968996197 @default.
- W4367309107 hasRelatedWork W4214885596 @default.
- W4367309107 isParatext "false" @default.
- W4367309107 isRetracted "false" @default.
- W4367309107 workType "article" @default.