Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367316797> ?p ?o ?g. }
- W4367316797 endingPage "188" @default.
- W4367316797 startingPage "188" @default.
- W4367316797 abstract "There are a large number of bearings in aircraft engines that are subjected to extreme operating conditions, such as high temperature, high speed, and heavy load, and their fatigue, wear, and other failure problems seriously affect the reliability of the engine. The complex and variable bearing operating conditions can lead to differences in the distribution of data between the source and target operating conditions, as well as insufficient labels. To solve the above challenges, a multi-scale attention mechanism-based domain adversarial neural network strategy for bearing fault diagnosis (MADANN) is proposed and verified using Case Western Reserve University bearing data and PT500mini mechanical bearing data in this paper. First, a multi-scale feature extractor with an attention mechanism is proposed to extract more discriminative multi-scale features of the input signal. Subsequently, the maximum mean discrepancy (MMD) is introduced to measure the difference between the distribution of the target domain and the source domain. Finally, the fault diagnosis process of the rolling is realized by minimizing the loss of the feature classifier, the loss of the MMD distance, and maximizing the loss of the domain discriminator. The verification results indicate that the proposed strategy has stronger learning ability and better diagnosis performance than shallow network, deep network, and commonly used domain adaptive models." @default.
- W4367316797 created "2023-04-29" @default.
- W4367316797 creator A5008644980 @default.
- W4367316797 creator A5078567338 @default.
- W4367316797 creator A5083377201 @default.
- W4367316797 creator A5083867418 @default.
- W4367316797 creator A5085201559 @default.
- W4367316797 creator A5090515354 @default.
- W4367316797 date "2023-04-27" @default.
- W4367316797 modified "2023-09-30" @default.
- W4367316797 title "A Multi-Scale Attention Mechanism Based Domain Adversarial Neural Network Strategy for Bearing Fault Diagnosis" @default.
- W4367316797 cites W2485614840 @default.
- W4367316797 cites W2593479727 @default.
- W4367316797 cites W2736225434 @default.
- W4367316797 cites W2801979527 @default.
- W4367316797 cites W2914776782 @default.
- W4367316797 cites W2938828471 @default.
- W4367316797 cites W2946724317 @default.
- W4367316797 cites W2975851144 @default.
- W4367316797 cites W2979865603 @default.
- W4367316797 cites W2980729011 @default.
- W4367316797 cites W2989818023 @default.
- W4367316797 cites W2998506103 @default.
- W4367316797 cites W3000399793 @default.
- W4367316797 cites W3005493426 @default.
- W4367316797 cites W3007050866 @default.
- W4367316797 cites W3041016892 @default.
- W4367316797 cites W3093984614 @default.
- W4367316797 cites W3106577699 @default.
- W4367316797 cites W3108417453 @default.
- W4367316797 cites W3117055840 @default.
- W4367316797 cites W3118616132 @default.
- W4367316797 cites W3127919876 @default.
- W4367316797 cites W3161000068 @default.
- W4367316797 cites W3200337201 @default.
- W4367316797 cites W3203405950 @default.
- W4367316797 cites W3213017966 @default.
- W4367316797 cites W4205772240 @default.
- W4367316797 cites W4206146696 @default.
- W4367316797 cites W4207016703 @default.
- W4367316797 cites W4214878964 @default.
- W4367316797 cites W4225273092 @default.
- W4367316797 cites W4226092012 @default.
- W4367316797 cites W4281859380 @default.
- W4367316797 cites W4284887971 @default.
- W4367316797 cites W4285204528 @default.
- W4367316797 cites W4288786174 @default.
- W4367316797 doi "https://doi.org/10.3390/act12050188" @default.
- W4367316797 hasPublicationYear "2023" @default.
- W4367316797 type Work @default.
- W4367316797 citedByCount "0" @default.
- W4367316797 crossrefType "journal-article" @default.
- W4367316797 hasAuthorship W4367316797A5008644980 @default.
- W4367316797 hasAuthorship W4367316797A5078567338 @default.
- W4367316797 hasAuthorship W4367316797A5083377201 @default.
- W4367316797 hasAuthorship W4367316797A5083867418 @default.
- W4367316797 hasAuthorship W4367316797A5085201559 @default.
- W4367316797 hasAuthorship W4367316797A5090515354 @default.
- W4367316797 hasBestOaLocation W43673167971 @default.
- W4367316797 hasConcept C119857082 @default.
- W4367316797 hasConcept C124101348 @default.
- W4367316797 hasConcept C127313418 @default.
- W4367316797 hasConcept C138885662 @default.
- W4367316797 hasConcept C153180895 @default.
- W4367316797 hasConcept C154945302 @default.
- W4367316797 hasConcept C165205528 @default.
- W4367316797 hasConcept C175551986 @default.
- W4367316797 hasConcept C199978012 @default.
- W4367316797 hasConcept C2776401178 @default.
- W4367316797 hasConcept C2779803651 @default.
- W4367316797 hasConcept C41008148 @default.
- W4367316797 hasConcept C41895202 @default.
- W4367316797 hasConcept C50644808 @default.
- W4367316797 hasConcept C76155785 @default.
- W4367316797 hasConcept C94915269 @default.
- W4367316797 hasConcept C95623464 @default.
- W4367316797 hasConcept C97931131 @default.
- W4367316797 hasConceptScore W4367316797C119857082 @default.
- W4367316797 hasConceptScore W4367316797C124101348 @default.
- W4367316797 hasConceptScore W4367316797C127313418 @default.
- W4367316797 hasConceptScore W4367316797C138885662 @default.
- W4367316797 hasConceptScore W4367316797C153180895 @default.
- W4367316797 hasConceptScore W4367316797C154945302 @default.
- W4367316797 hasConceptScore W4367316797C165205528 @default.
- W4367316797 hasConceptScore W4367316797C175551986 @default.
- W4367316797 hasConceptScore W4367316797C199978012 @default.
- W4367316797 hasConceptScore W4367316797C2776401178 @default.
- W4367316797 hasConceptScore W4367316797C2779803651 @default.
- W4367316797 hasConceptScore W4367316797C41008148 @default.
- W4367316797 hasConceptScore W4367316797C41895202 @default.
- W4367316797 hasConceptScore W4367316797C50644808 @default.
- W4367316797 hasConceptScore W4367316797C76155785 @default.
- W4367316797 hasConceptScore W4367316797C94915269 @default.
- W4367316797 hasConceptScore W4367316797C95623464 @default.
- W4367316797 hasConceptScore W4367316797C97931131 @default.
- W4367316797 hasFunder F4320321001 @default.
- W4367316797 hasFunder F4320322769 @default.
- W4367316797 hasFunder F4320335777 @default.