Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367317978> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4367317978 abstract "In the last two decades many detailed full transcriptomic studies on complex biological samples have been published and included in large gene expression repositories. These studies primarily provide bulk expression signal for each sample, including multiple cell-types mixed within the global signal. The cellular heterogeneity in these mixtures does not allow the activity of specific genes in specific cell types to be identified. Therefore, inferring relative cellular composition is a very powerful tool to achieve a more accurate molecular profiling of complex biological samples. In recent decades, computational techniques have been developed to solve this problem by applying cell deconvolution methods, designed to decompose cell mixtures into their cellular components and calculate the relative proportions of these elements. Some of them, only calculate the cell proportions (supervised methods), while other deconvolution algorithms can also identify the gene signatures specific for each cell type (unsupervised methods). In these work, five deconvolution methods (CIBERSORT, FARDEEP, DECONICA, LINSEED and ABIS) were implemented and used to analyze blood and immune cells, and also cancer cells, in complex mixture samples (using three bulk expression datasets). Our study provides three analytical tools (corrplots, cell-signature plots and bar-mixture plots) that allow a thorough comparative analysis of the cell mixture data. The work indicates that CIBERSORT is a robust method optimized for the identification of immune cell-types, but not as efficient in the identification of cancer cells. We also observed that LINSEED is a very powerful unsupervised method that provides precise and specific gene signatures for each of the five main immune cell-types analyzed: neutrophils and monocytes (in the myeloid lineage), B-cells, NK cells and T-cells (in the lymphoid lineage)." @default.
- W4367317978 created "2023-04-29" @default.
- W4367317978 creator A5002761586 @default.
- W4367317978 creator A5004789755 @default.
- W4367317978 creator A5018355383 @default.
- W4367317978 creator A5057168078 @default.
- W4367317978 creator A5078277063 @default.
- W4367317978 creator A5090598948 @default.
- W4367317978 date "2023-04-27" @default.
- W4367317978 modified "2023-10-16" @default.
- W4367317978 title "Comparative Analysis of Cell Mixtures Deconvolution and Gene Signatures Generated for Blood, Immune and Cancer Cells" @default.
- W4367317978 doi "https://doi.org/10.20944/preprints202304.1073.v1" @default.
- W4367317978 hasPublicationYear "2023" @default.
- W4367317978 type Work @default.
- W4367317978 citedByCount "0" @default.
- W4367317978 crossrefType "posted-content" @default.
- W4367317978 hasAuthorship W4367317978A5002761586 @default.
- W4367317978 hasAuthorship W4367317978A5004789755 @default.
- W4367317978 hasAuthorship W4367317978A5018355383 @default.
- W4367317978 hasAuthorship W4367317978A5057168078 @default.
- W4367317978 hasAuthorship W4367317978A5078277063 @default.
- W4367317978 hasAuthorship W4367317978A5090598948 @default.
- W4367317978 hasBestOaLocation W43673179781 @default.
- W4367317978 hasConcept C11413529 @default.
- W4367317978 hasConcept C116834253 @default.
- W4367317978 hasConcept C1491633281 @default.
- W4367317978 hasConcept C174576160 @default.
- W4367317978 hasConcept C186060115 @default.
- W4367317978 hasConcept C189014844 @default.
- W4367317978 hasConcept C41008148 @default.
- W4367317978 hasConcept C54355233 @default.
- W4367317978 hasConcept C59822182 @default.
- W4367317978 hasConcept C70721500 @default.
- W4367317978 hasConcept C86803240 @default.
- W4367317978 hasConceptScore W4367317978C11413529 @default.
- W4367317978 hasConceptScore W4367317978C116834253 @default.
- W4367317978 hasConceptScore W4367317978C1491633281 @default.
- W4367317978 hasConceptScore W4367317978C174576160 @default.
- W4367317978 hasConceptScore W4367317978C186060115 @default.
- W4367317978 hasConceptScore W4367317978C189014844 @default.
- W4367317978 hasConceptScore W4367317978C41008148 @default.
- W4367317978 hasConceptScore W4367317978C54355233 @default.
- W4367317978 hasConceptScore W4367317978C59822182 @default.
- W4367317978 hasConceptScore W4367317978C70721500 @default.
- W4367317978 hasConceptScore W4367317978C86803240 @default.
- W4367317978 hasLocation W43673179781 @default.
- W4367317978 hasOpenAccess W4367317978 @default.
- W4367317978 hasPrimaryLocation W43673179781 @default.
- W4367317978 hasRelatedWork W2128227827 @default.
- W4367317978 hasRelatedWork W2795381779 @default.
- W4367317978 hasRelatedWork W2951914955 @default.
- W4367317978 hasRelatedWork W3034061995 @default.
- W4367317978 hasRelatedWork W3183621425 @default.
- W4367317978 hasRelatedWork W4242022357 @default.
- W4367317978 hasRelatedWork W4296703446 @default.
- W4367317978 hasRelatedWork W4307358436 @default.
- W4367317978 hasRelatedWork W4311213477 @default.
- W4367317978 hasRelatedWork W4327861463 @default.
- W4367317978 isParatext "false" @default.
- W4367317978 isRetracted "false" @default.
- W4367317978 workType "article" @default.