Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367322519> ?p ?o ?g. }
- W4367322519 endingPage "103381" @default.
- W4367322519 startingPage "103381" @default.
- W4367322519 abstract "Social networks have grown into a widespread form of communication that allows a large number of users to participate in conversations and consume information at any time. The casual nature of social media allows for nonstandard terminology, some of which may be considered rude and derogatory. As a result, a significant portion of social media users is found to express disrespectful language. This problem may intensify in certain developing countries where young children are granted unsupervised access to social media platforms. Furthermore, the sheer amount of social media data generated daily by millions of users makes it impractical for humans to monitor and regulate inappropriate content. If adolescents are exposed to these harmful language patterns without adequate supervision, they may feel obliged to adopt them. In addition, unrestricted aggression in online forums may result in cyberbullying and other dreadful occurrences. While computational linguistics research has addressed the difficulty of detecting abusive dialogues, issues remain unanswered for low-resource languages with little annotated data, leading the majority of supervised techniques to perform poorly. In addition, social media content is often presented in complex, context-rich formats that encourage creative user involvement. Therefore, we propose to improve the performance of abusive language detection and classification in a low-resource setting, using both the abundant unlabeled data and the context features via the co-training protocol that enables two machine learning models, each learning from an orthogonal set of features, to teach each other, resulting in an overall performance improvement. Empirical results reveal that our proposed framework achieves F1 values of 0.922 and 0.827, surpassing the state-of-the-art baselines by 3.32% and 45.85% for binary and fine-grained classification tasks, respectively. In addition to proving the efficacy of co-training in a low-resource situation for abusive language detection and classification tasks, the findings shed light on several opportunities to use unlabeled data and contextual characteristics of social networks in a variety of social computing applications." @default.
- W4367322519 created "2023-04-29" @default.
- W4367322519 creator A5023506216 @default.
- W4367322519 creator A5038568606 @default.
- W4367322519 creator A5053668664 @default.
- W4367322519 creator A5064301221 @default.
- W4367322519 creator A5081285440 @default.
- W4367322519 date "2023-07-01" @default.
- W4367322519 modified "2023-09-25" @default.
- W4367322519 title "FALCoN: Detecting and classifying abusive language in social networks using context features and unlabeled data" @default.
- W4367322519 cites W1977177161 @default.
- W4367322519 cites W1980086685 @default.
- W4367322519 cites W2011519734 @default.
- W4367322519 cites W2023276992 @default.
- W4367322519 cites W2047449974 @default.
- W4367322519 cites W2048679005 @default.
- W4367322519 cites W2121360488 @default.
- W4367322519 cites W2125408374 @default.
- W4367322519 cites W2136848157 @default.
- W4367322519 cites W2150757437 @default.
- W4367322519 cites W2164777277 @default.
- W4367322519 cites W2168625136 @default.
- W4367322519 cites W2340954483 @default.
- W4367322519 cites W2747187574 @default.
- W4367322519 cites W2807333695 @default.
- W4367322519 cites W28412257 @default.
- W4367322519 cites W2911964244 @default.
- W4367322519 cites W2941003925 @default.
- W4367322519 cites W2955618027 @default.
- W4367322519 cites W2963793818 @default.
- W4367322519 cites W2985169259 @default.
- W4367322519 cites W2987210925 @default.
- W4367322519 cites W3009619352 @default.
- W4367322519 cites W3036114413 @default.
- W4367322519 cites W3095340763 @default.
- W4367322519 cites W3120057186 @default.
- W4367322519 cites W3120319767 @default.
- W4367322519 cites W3135491589 @default.
- W4367322519 cites W3158586872 @default.
- W4367322519 cites W3160969032 @default.
- W4367322519 cites W3189420316 @default.
- W4367322519 cites W3193590674 @default.
- W4367322519 cites W3197263286 @default.
- W4367322519 cites W3207896692 @default.
- W4367322519 cites W3210938103 @default.
- W4367322519 cites W4281650088 @default.
- W4367322519 cites W4284961492 @default.
- W4367322519 cites W4285061533 @default.
- W4367322519 doi "https://doi.org/10.1016/j.ipm.2023.103381" @default.
- W4367322519 hasPublicationYear "2023" @default.
- W4367322519 type Work @default.
- W4367322519 citedByCount "2" @default.
- W4367322519 countsByYear W43673225192023 @default.
- W4367322519 crossrefType "journal-article" @default.
- W4367322519 hasAuthorship W4367322519A5023506216 @default.
- W4367322519 hasAuthorship W4367322519A5038568606 @default.
- W4367322519 hasAuthorship W4367322519A5053668664 @default.
- W4367322519 hasAuthorship W4367322519A5064301221 @default.
- W4367322519 hasAuthorship W4367322519A5081285440 @default.
- W4367322519 hasConcept C108827166 @default.
- W4367322519 hasConcept C119857082 @default.
- W4367322519 hasConcept C136764020 @default.
- W4367322519 hasConcept C138885662 @default.
- W4367322519 hasConcept C151730666 @default.
- W4367322519 hasConcept C154945302 @default.
- W4367322519 hasConcept C159985019 @default.
- W4367322519 hasConcept C177264268 @default.
- W4367322519 hasConcept C192562407 @default.
- W4367322519 hasConcept C199360897 @default.
- W4367322519 hasConcept C204321447 @default.
- W4367322519 hasConcept C206345919 @default.
- W4367322519 hasConcept C2779343474 @default.
- W4367322519 hasConcept C2781426162 @default.
- W4367322519 hasConcept C31258907 @default.
- W4367322519 hasConcept C41008148 @default.
- W4367322519 hasConcept C41895202 @default.
- W4367322519 hasConcept C518677369 @default.
- W4367322519 hasConcept C547195049 @default.
- W4367322519 hasConcept C86803240 @default.
- W4367322519 hasConceptScore W4367322519C108827166 @default.
- W4367322519 hasConceptScore W4367322519C119857082 @default.
- W4367322519 hasConceptScore W4367322519C136764020 @default.
- W4367322519 hasConceptScore W4367322519C138885662 @default.
- W4367322519 hasConceptScore W4367322519C151730666 @default.
- W4367322519 hasConceptScore W4367322519C154945302 @default.
- W4367322519 hasConceptScore W4367322519C159985019 @default.
- W4367322519 hasConceptScore W4367322519C177264268 @default.
- W4367322519 hasConceptScore W4367322519C192562407 @default.
- W4367322519 hasConceptScore W4367322519C199360897 @default.
- W4367322519 hasConceptScore W4367322519C204321447 @default.
- W4367322519 hasConceptScore W4367322519C206345919 @default.
- W4367322519 hasConceptScore W4367322519C2779343474 @default.
- W4367322519 hasConceptScore W4367322519C2781426162 @default.
- W4367322519 hasConceptScore W4367322519C31258907 @default.
- W4367322519 hasConceptScore W4367322519C41008148 @default.
- W4367322519 hasConceptScore W4367322519C41895202 @default.
- W4367322519 hasConceptScore W4367322519C518677369 @default.
- W4367322519 hasConceptScore W4367322519C547195049 @default.