Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367322561> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4367322561 abstract "When the transformer is running, the vibration which is generated in the core and winding will spread outward through the medium of metal, oil, and air. The magnetic field of the core changes with the variation of the transformer excitation source and the state of the core, so the corresponding vibration and noise change. Therefore, the vibration and noise of the transformer contain a lot of information. If the information can be associated with the fault characteristics of the transformer, it is significant to evaluate the running state of the transformer through the vibration and noise signal, which improve the intelligence, safety, and stability of the transformer operation. Based on this, modeling and simulation of transformer multi-point grounding, DC bias, and short-circuit between silicon steel sheets fault are first carried out in this paper, and vibration and noise distribution of transformer under different faults are given. Second, a fault diagnosis method based on transformer vibration and noise characteristics is proposed. In the process of implementation, vibration and noise signals under multi-point grounding, DC bias, and short-circuit between silicon steel sheets are taken as the sample data, and the probabilistic neural network algorithm is used to effectively predict the transformer fault. Finally, the effectiveness of the proposed scheme is verified by identifying the simulation faults-the proposed fault diagnosis method based on PNN can be effectively applied to transformer." @default.
- W4367322561 created "2023-04-29" @default.
- W4367322561 creator A5014451088 @default.
- W4367322561 creator A5027659531 @default.
- W4367322561 creator A5059646947 @default.
- W4367322561 creator A5063627915 @default.
- W4367322561 creator A5076153014 @default.
- W4367322561 creator A5078691114 @default.
- W4367322561 date "2023-04-27" @default.
- W4367322561 modified "2023-09-27" @default.
- W4367322561 title "Transformer fault diagnosis based on probabilistic neural networks combined with vibration and noise characteristics" @default.
- W4367322561 cites W2028795174 @default.
- W4367322561 cites W2037250283 @default.
- W4367322561 cites W2063458563 @default.
- W4367322561 cites W2081502700 @default.
- W4367322561 cites W2108578236 @default.
- W4367322561 cites W2340129524 @default.
- W4367322561 cites W2601441584 @default.
- W4367322561 cites W2981600414 @default.
- W4367322561 cites W307207263 @default.
- W4367322561 cites W3120386252 @default.
- W4367322561 cites W4212827074 @default.
- W4367322561 doi "https://doi.org/10.3389/fenrg.2023.1169508" @default.
- W4367322561 hasPublicationYear "2023" @default.
- W4367322561 type Work @default.
- W4367322561 citedByCount "0" @default.
- W4367322561 crossrefType "journal-article" @default.
- W4367322561 hasAuthorship W4367322561A5014451088 @default.
- W4367322561 hasAuthorship W4367322561A5027659531 @default.
- W4367322561 hasAuthorship W4367322561A5059646947 @default.
- W4367322561 hasAuthorship W4367322561A5063627915 @default.
- W4367322561 hasAuthorship W4367322561A5076153014 @default.
- W4367322561 hasAuthorship W4367322561A5078691114 @default.
- W4367322561 hasBestOaLocation W43673225611 @default.
- W4367322561 hasConcept C117323899 @default.
- W4367322561 hasConcept C119599485 @default.
- W4367322561 hasConcept C121332964 @default.
- W4367322561 hasConcept C127413603 @default.
- W4367322561 hasConcept C165801399 @default.
- W4367322561 hasConcept C198394728 @default.
- W4367322561 hasConcept C24326235 @default.
- W4367322561 hasConcept C24890656 @default.
- W4367322561 hasConcept C66322947 @default.
- W4367322561 hasConceptScore W4367322561C117323899 @default.
- W4367322561 hasConceptScore W4367322561C119599485 @default.
- W4367322561 hasConceptScore W4367322561C121332964 @default.
- W4367322561 hasConceptScore W4367322561C127413603 @default.
- W4367322561 hasConceptScore W4367322561C165801399 @default.
- W4367322561 hasConceptScore W4367322561C198394728 @default.
- W4367322561 hasConceptScore W4367322561C24326235 @default.
- W4367322561 hasConceptScore W4367322561C24890656 @default.
- W4367322561 hasConceptScore W4367322561C66322947 @default.
- W4367322561 hasLocation W43673225611 @default.
- W4367322561 hasOpenAccess W4367322561 @default.
- W4367322561 hasPrimaryLocation W43673225611 @default.
- W4367322561 hasRelatedWork W2348107051 @default.
- W4367322561 hasRelatedWork W2350175534 @default.
- W4367322561 hasRelatedWork W2354065378 @default.
- W4367322561 hasRelatedWork W2364716371 @default.
- W4367322561 hasRelatedWork W2365297643 @default.
- W4367322561 hasRelatedWork W2366681273 @default.
- W4367322561 hasRelatedWork W2373443317 @default.
- W4367322561 hasRelatedWork W2382773045 @default.
- W4367322561 hasRelatedWork W2389342727 @default.
- W4367322561 hasRelatedWork W2230389173 @default.
- W4367322561 hasVolume "11" @default.
- W4367322561 isParatext "false" @default.
- W4367322561 isRetracted "false" @default.
- W4367322561 workType "article" @default.