Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367331092> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4367331092 endingPage "1807" @default.
- W4367331092 startingPage "1800" @default.
- W4367331092 abstract "Aim: Chronic Kidney Disease (CKD), also referred to as long-term nephrotic syndrome, has risen exponentially in importance. A person may only remain missing their kidneys for an estimate of 18 days, which creates a huge need for hemodialysis and kidney replacements. The main objective of this study aims to find the best-suited algorithm that will give us the most ideal prediction. We will be comparing Novel Decision Tree with Random forest to find out which of these can give us the best accuracy. Material and Methods: The study used 143 samples with Novel Decision Tree and Random Forest is executed with varying training and testing splits for predicting the accuracy for kidney disease prediction with the G-power value of 80% and the kidney datasets were gathered from different websites, together with data from more recent studies, a criterion of 0.05%, a reliability range of 95%, a means, and a confidence interval. The performance of the classifiers are evaluated based on their accuracy rate using the chronic kidney disease dataset. Results: The accuracy of predicting kidney disease in Novel Decision Tree (96.66%) and Random Forest (62.25%) is obtained. By using independent samples t-tests, it can be shown that there is a statistically 2-tailed notable change in efficiency seen between two algorithms of 0.000 (p<0.05). Conclusion: The report’s findings suggest that the Innovative can be used to predict kidney illness Decision Tree (DT) algorithm appears to be significantly better than the Random Forest (RF) with improved accuracy." @default.
- W4367331092 created "2023-04-30" @default.
- W4367331092 creator A5044402048 @default.
- W4367331092 creator A5082072535 @default.
- W4367331092 date "2023-02-14" @default.
- W4367331092 modified "2023-09-30" @default.
- W4367331092 title "Classification And Prediction Of Chronic Kidney Disease Using Novel Decision Tree Algorithm By Comparing Random Forest For Obtaining Better Accuracy" @default.
- W4367331092 doi "https://doi.org/10.18137/cardiometry.2022.25.18001807" @default.
- W4367331092 hasPublicationYear "2023" @default.
- W4367331092 type Work @default.
- W4367331092 citedByCount "0" @default.
- W4367331092 crossrefType "journal-article" @default.
- W4367331092 hasAuthorship W4367331092A5044402048 @default.
- W4367331092 hasAuthorship W4367331092A5082072535 @default.
- W4367331092 hasBestOaLocation W43673310921 @default.
- W4367331092 hasConcept C105795698 @default.
- W4367331092 hasConcept C113174947 @default.
- W4367331092 hasConcept C11413529 @default.
- W4367331092 hasConcept C124101348 @default.
- W4367331092 hasConcept C126322002 @default.
- W4367331092 hasConcept C134306372 @default.
- W4367331092 hasConcept C154945302 @default.
- W4367331092 hasConcept C169258074 @default.
- W4367331092 hasConcept C2778653478 @default.
- W4367331092 hasConcept C33923547 @default.
- W4367331092 hasConcept C41008148 @default.
- W4367331092 hasConcept C44249647 @default.
- W4367331092 hasConcept C71924100 @default.
- W4367331092 hasConcept C84525736 @default.
- W4367331092 hasConceptScore W4367331092C105795698 @default.
- W4367331092 hasConceptScore W4367331092C113174947 @default.
- W4367331092 hasConceptScore W4367331092C11413529 @default.
- W4367331092 hasConceptScore W4367331092C124101348 @default.
- W4367331092 hasConceptScore W4367331092C126322002 @default.
- W4367331092 hasConceptScore W4367331092C134306372 @default.
- W4367331092 hasConceptScore W4367331092C154945302 @default.
- W4367331092 hasConceptScore W4367331092C169258074 @default.
- W4367331092 hasConceptScore W4367331092C2778653478 @default.
- W4367331092 hasConceptScore W4367331092C33923547 @default.
- W4367331092 hasConceptScore W4367331092C41008148 @default.
- W4367331092 hasConceptScore W4367331092C44249647 @default.
- W4367331092 hasConceptScore W4367331092C71924100 @default.
- W4367331092 hasConceptScore W4367331092C84525736 @default.
- W4367331092 hasIssue "25" @default.
- W4367331092 hasLocation W43673310921 @default.
- W4367331092 hasOpenAccess W4367331092 @default.
- W4367331092 hasPrimaryLocation W43673310921 @default.
- W4367331092 hasRelatedWork W3047564199 @default.
- W4367331092 hasRelatedWork W3086642004 @default.
- W4367331092 hasRelatedWork W4200057378 @default.
- W4367331092 hasRelatedWork W4200196661 @default.
- W4367331092 hasRelatedWork W4285225238 @default.
- W4367331092 hasRelatedWork W4287669202 @default.
- W4367331092 hasRelatedWork W4308191010 @default.
- W4367331092 hasRelatedWork W4308415819 @default.
- W4367331092 hasRelatedWork W4318350883 @default.
- W4367331092 hasRelatedWork W4319431271 @default.
- W4367331092 isParatext "false" @default.
- W4367331092 isRetracted "false" @default.
- W4367331092 workType "article" @default.