Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367335965> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4367335965 endingPage "1545" @default.
- W4367335965 startingPage "1538" @default.
- W4367335965 abstract "Aim: Heart attacks are usually caused due to blockages, partially or completely, of the heart’s veins or arteries that constrict the flow of blood from or to the heart. The primary objective of this review aims to be seen as the most appropriate algorithm to give us the ideal prediction. We will be comparing the novel Random forest with Logistic regression to find out which of these can give us the best accuracy. Material and Methods: The study used 143 samples with novel Random Forest and Logistic Regression is executed with varying training and testing splits for foreseeing the accuracy of coronary disease prediction with the 80% of G-power value and heart disease data were gathered from multiple web sources, including latest The study’s findings and criterion were 0.05%, with a 95% probability value, average, and confidence interval. The performance accuracy rate of the classifiers is used to evaluate the coronary disease dataset. There was a statistically significant value test between the novel Random Forest and Logistic Regression is 0.046 (p<0.05). Results and Discussion: The accuracy of predicting coronary disease in the novel Random Forest 90.16 % and Logistic Regression 85.25 % is obtained. Conclusion: This study concludes that the Prediction of Coronary disease using the novel Random Forest (RF) algorithm looks to be fundamentally superior to the Logistic Regression (LR) with increased precision." @default.
- W4367335965 created "2023-04-30" @default.
- W4367335965 creator A5000790622 @default.
- W4367335965 creator A5002571251 @default.
- W4367335965 date "2023-02-14" @default.
- W4367335965 modified "2023-10-18" @default.
- W4367335965 title "Classification and Prediction of Heart Disease using Novel Random Forest Algorithm by Comparing Logistic Regression for Obtaining Better Accuracy" @default.
- W4367335965 doi "https://doi.org/10.18137/cardiometry.2022.25.15381545" @default.
- W4367335965 hasPublicationYear "2023" @default.
- W4367335965 type Work @default.
- W4367335965 citedByCount "1" @default.
- W4367335965 countsByYear W43673359652023 @default.
- W4367335965 crossrefType "journal-article" @default.
- W4367335965 hasAuthorship W4367335965A5000790622 @default.
- W4367335965 hasAuthorship W4367335965A5002571251 @default.
- W4367335965 hasBestOaLocation W43673359651 @default.
- W4367335965 hasConcept C105795698 @default.
- W4367335965 hasConcept C11413529 @default.
- W4367335965 hasConcept C119857082 @default.
- W4367335965 hasConcept C126322002 @default.
- W4367335965 hasConcept C151956035 @default.
- W4367335965 hasConcept C152877465 @default.
- W4367335965 hasConcept C154945302 @default.
- W4367335965 hasConcept C169258074 @default.
- W4367335965 hasConcept C3018906752 @default.
- W4367335965 hasConcept C33923547 @default.
- W4367335965 hasConcept C41008148 @default.
- W4367335965 hasConcept C44249647 @default.
- W4367335965 hasConcept C71924100 @default.
- W4367335965 hasConcept C83546350 @default.
- W4367335965 hasConceptScore W4367335965C105795698 @default.
- W4367335965 hasConceptScore W4367335965C11413529 @default.
- W4367335965 hasConceptScore W4367335965C119857082 @default.
- W4367335965 hasConceptScore W4367335965C126322002 @default.
- W4367335965 hasConceptScore W4367335965C151956035 @default.
- W4367335965 hasConceptScore W4367335965C152877465 @default.
- W4367335965 hasConceptScore W4367335965C154945302 @default.
- W4367335965 hasConceptScore W4367335965C169258074 @default.
- W4367335965 hasConceptScore W4367335965C3018906752 @default.
- W4367335965 hasConceptScore W4367335965C33923547 @default.
- W4367335965 hasConceptScore W4367335965C41008148 @default.
- W4367335965 hasConceptScore W4367335965C44249647 @default.
- W4367335965 hasConceptScore W4367335965C71924100 @default.
- W4367335965 hasConceptScore W4367335965C83546350 @default.
- W4367335965 hasIssue "25" @default.
- W4367335965 hasLocation W43673359651 @default.
- W4367335965 hasOpenAccess W4367335965 @default.
- W4367335965 hasPrimaryLocation W43673359651 @default.
- W4367335965 hasRelatedWork W2787485953 @default.
- W4367335965 hasRelatedWork W2940614149 @default.
- W4367335965 hasRelatedWork W3217432596 @default.
- W4367335965 hasRelatedWork W4288365262 @default.
- W4367335965 hasRelatedWork W4289884158 @default.
- W4367335965 hasRelatedWork W4308573183 @default.
- W4367335965 hasRelatedWork W4366967560 @default.
- W4367335965 hasRelatedWork W4367335937 @default.
- W4367335965 hasRelatedWork W4367335965 @default.
- W4367335965 hasRelatedWork W4385574838 @default.
- W4367335965 isParatext "false" @default.
- W4367335965 isRetracted "false" @default.
- W4367335965 workType "article" @default.