Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367336093> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4367336093 endingPage "811" @default.
- W4367336093 startingPage "806" @default.
- W4367336093 abstract "Aim: The goal of this research is to use minimum distance to mean classifier and bayesian classifiers to predict and detect kidney stones. Materials and Methods: This investigation made use of a collection of data from Kaggle website. Samples were collected (N=10) for normal kidney images and (N=10) for kidney with stone images. Total sample size was calculated using clinical.com. As a result the total number of samples 20 was considered for analysis. Using Matlab software and a standard data set collected from Kaggle website, the classification accuracy was obtained. Pretest G power taken as 85 in sample size calculation can be done through clinical.com. Results: The accuracy (%) of both classification techniques are compared using SPSS software by independent sample t-tests. There is a statistical significant difference between minimum distance to mean classifier and Bayesian classifier.Comparison results show that innovative minimum distance to mean classifier give better classification with an accuracy of (78.85%) than bayesian classifiers (71.1314%).There is a statistical significant difference between minimum distance to mean classifier and bayesian classifiers. The Minimum Distance to Mean classifier with p=0.708, p>0.05 insignificant and showed better results in comparison to Bayesian classifiers. Conclusion: The Minimum Distance to Mean Classifier appears to give better accuracy than the Bayesian Classifiers." @default.
- W4367336093 created "2023-04-30" @default.
- W4367336093 creator A5007101706 @default.
- W4367336093 creator A5022539412 @default.
- W4367336093 date "2023-02-14" @default.
- W4367336093 modified "2023-09-26" @default.
- W4367336093 title "Analysis and Comparison of Kidney Stone Detection using Minimum Distance to Mean Classifier and Bayesian Classifier with Improved Classification Accuracy" @default.
- W4367336093 doi "https://doi.org/10.18137/cardiometry.2022.25.806811" @default.
- W4367336093 hasPublicationYear "2023" @default.
- W4367336093 type Work @default.
- W4367336093 citedByCount "0" @default.
- W4367336093 crossrefType "journal-article" @default.
- W4367336093 hasAuthorship W4367336093A5007101706 @default.
- W4367336093 hasAuthorship W4367336093A5022539412 @default.
- W4367336093 hasBestOaLocation W43673360931 @default.
- W4367336093 hasConcept C105795698 @default.
- W4367336093 hasConcept C107673813 @default.
- W4367336093 hasConcept C12267149 @default.
- W4367336093 hasConcept C129848803 @default.
- W4367336093 hasConcept C153180895 @default.
- W4367336093 hasConcept C154945302 @default.
- W4367336093 hasConcept C33923547 @default.
- W4367336093 hasConcept C41008148 @default.
- W4367336093 hasConcept C52001869 @default.
- W4367336093 hasConcept C95623464 @default.
- W4367336093 hasConceptScore W4367336093C105795698 @default.
- W4367336093 hasConceptScore W4367336093C107673813 @default.
- W4367336093 hasConceptScore W4367336093C12267149 @default.
- W4367336093 hasConceptScore W4367336093C129848803 @default.
- W4367336093 hasConceptScore W4367336093C153180895 @default.
- W4367336093 hasConceptScore W4367336093C154945302 @default.
- W4367336093 hasConceptScore W4367336093C33923547 @default.
- W4367336093 hasConceptScore W4367336093C41008148 @default.
- W4367336093 hasConceptScore W4367336093C52001869 @default.
- W4367336093 hasConceptScore W4367336093C95623464 @default.
- W4367336093 hasIssue "25" @default.
- W4367336093 hasLocation W43673360931 @default.
- W4367336093 hasOpenAccess W4367336093 @default.
- W4367336093 hasPrimaryLocation W43673360931 @default.
- W4367336093 hasRelatedWork W1981288096 @default.
- W4367336093 hasRelatedWork W2167582322 @default.
- W4367336093 hasRelatedWork W2547131314 @default.
- W4367336093 hasRelatedWork W2563096758 @default.
- W4367336093 hasRelatedWork W2782536477 @default.
- W4367336093 hasRelatedWork W2972035100 @default.
- W4367336093 hasRelatedWork W3044272884 @default.
- W4367336093 hasRelatedWork W4385512994 @default.
- W4367336093 hasRelatedWork W4386053843 @default.
- W4367336093 hasRelatedWork W3158004940 @default.
- W4367336093 isParatext "false" @default.
- W4367336093 isRetracted "false" @default.
- W4367336093 workType "article" @default.