Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367338077> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4367338077 endingPage "0" @default.
- W4367338077 startingPage "0" @default.
- W4367338077 abstract "Estimating the severity of a traffic accident is a problem in motor vehicle traffic because it affects saving human life. If the severity value can be predicted before the accident occurs, all the emergency teams needed could be sent to the area to provide faster first aid. With this aim, we studied a big data set for accidents in the USA between 2016 and 2020, which is almost 2.25x106 rows long. First, the data is preprocessed by removing the unnecessary variables. Then rows with blank cells are removed. Finally, about 1.7x106 rows length data is left for the prediction process. A machine learning algorithm has been used to determine the severity classification based on 16 input parameters. Moreover, binary to decimal count conversation has been used as a novel preprocessing method. As a result, the model has been built with a total accuracy of 0.816. the test results are also validated with precision, recall, and f1-score values. In this study, an auto-machine learning model has been developed and trained to predict the severity of a possible traffic accident based on the weather and road conditions." @default.
- W4367338077 created "2023-04-30" @default.
- W4367338077 creator A5017166265 @default.
- W4367338077 creator A5020253926 @default.
- W4367338077 creator A5052583608 @default.
- W4367338077 creator A5041323441 @default.
- W4367338077 date "2023-02-22" @default.
- W4367338077 modified "2023-09-27" @default.
- W4367338077 title "Accident Severity Prediction in Big Data Using Auto-Machine Learning" @default.
- W4367338077 doi "https://doi.org/10.24200/sci.2023.60144.6626" @default.
- W4367338077 hasPublicationYear "2023" @default.
- W4367338077 type Work @default.
- W4367338077 citedByCount "0" @default.
- W4367338077 crossrefType "journal-article" @default.
- W4367338077 hasAuthorship W4367338077A5017166265 @default.
- W4367338077 hasAuthorship W4367338077A5020253926 @default.
- W4367338077 hasAuthorship W4367338077A5041323441 @default.
- W4367338077 hasAuthorship W4367338077A5052583608 @default.
- W4367338077 hasBestOaLocation W43673380771 @default.
- W4367338077 hasConcept C10551718 @default.
- W4367338077 hasConcept C105795698 @default.
- W4367338077 hasConcept C111919701 @default.
- W4367338077 hasConcept C119857082 @default.
- W4367338077 hasConcept C12267149 @default.
- W4367338077 hasConcept C124101348 @default.
- W4367338077 hasConcept C127413603 @default.
- W4367338077 hasConcept C135598885 @default.
- W4367338077 hasConcept C154945302 @default.
- W4367338077 hasConcept C2989506057 @default.
- W4367338077 hasConcept C33923547 @default.
- W4367338077 hasConcept C34736171 @default.
- W4367338077 hasConcept C41008148 @default.
- W4367338077 hasConcept C58489278 @default.
- W4367338077 hasConcept C65045869 @default.
- W4367338077 hasConcept C66905080 @default.
- W4367338077 hasConcept C77088390 @default.
- W4367338077 hasConcept C77595967 @default.
- W4367338077 hasConcept C94375191 @default.
- W4367338077 hasConcept C98045186 @default.
- W4367338077 hasConceptScore W4367338077C10551718 @default.
- W4367338077 hasConceptScore W4367338077C105795698 @default.
- W4367338077 hasConceptScore W4367338077C111919701 @default.
- W4367338077 hasConceptScore W4367338077C119857082 @default.
- W4367338077 hasConceptScore W4367338077C12267149 @default.
- W4367338077 hasConceptScore W4367338077C124101348 @default.
- W4367338077 hasConceptScore W4367338077C127413603 @default.
- W4367338077 hasConceptScore W4367338077C135598885 @default.
- W4367338077 hasConceptScore W4367338077C154945302 @default.
- W4367338077 hasConceptScore W4367338077C2989506057 @default.
- W4367338077 hasConceptScore W4367338077C33923547 @default.
- W4367338077 hasConceptScore W4367338077C34736171 @default.
- W4367338077 hasConceptScore W4367338077C41008148 @default.
- W4367338077 hasConceptScore W4367338077C58489278 @default.
- W4367338077 hasConceptScore W4367338077C65045869 @default.
- W4367338077 hasConceptScore W4367338077C66905080 @default.
- W4367338077 hasConceptScore W4367338077C77088390 @default.
- W4367338077 hasConceptScore W4367338077C77595967 @default.
- W4367338077 hasConceptScore W4367338077C94375191 @default.
- W4367338077 hasConceptScore W4367338077C98045186 @default.
- W4367338077 hasIssue "0" @default.
- W4367338077 hasLocation W43673380771 @default.
- W4367338077 hasOpenAccess W4367338077 @default.
- W4367338077 hasPrimaryLocation W43673380771 @default.
- W4367338077 hasRelatedWork W176219849 @default.
- W4367338077 hasRelatedWork W2008100018 @default.
- W4367338077 hasRelatedWork W2021866862 @default.
- W4367338077 hasRelatedWork W2022288139 @default.
- W4367338077 hasRelatedWork W2106760772 @default.
- W4367338077 hasRelatedWork W2184638288 @default.
- W4367338077 hasRelatedWork W2383487638 @default.
- W4367338077 hasRelatedWork W2889453578 @default.
- W4367338077 hasRelatedWork W4231149697 @default.
- W4367338077 hasRelatedWork W962149676 @default.
- W4367338077 hasVolume "0" @default.
- W4367338077 isParatext "false" @default.
- W4367338077 isRetracted "false" @default.
- W4367338077 workType "article" @default.