Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367349820> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4367349820 endingPage "302" @default.
- W4367349820 startingPage "293" @default.
- W4367349820 abstract "More and more genetic and metabolic abnormalities are now known to cause cancer, which is typically fatal. Any particular body part may become infected by cancerous cells, which can be fatal. One of the most prevalent types of cancer is skin cancer, which is spreading worldwide.The primary subtypes of skin cancer are squamous and basal cell carcinomas, as well as melanoma, which is clinically aggressive and accounts for the majority of fatalities. Screening for skin cancer is so crucial.Deep Learning is one of the best options to quickly and precisely diagnose skin cancer (DL).This study used the Convolution Neural Network (CNN) deep learning technique to distinguish between the two primary types of cancers, malignant and benign, using the ISIC2018 dataset. The 3533 skin lesions in this dataset range from benign to malignant, and nonmelanocytic to melanocytic malignancies. The images were initially enhanced and edited using ESRGAN. The preprocessing stage involved resizing, normalising, and augmenting the images. By combining the results of numerous repetitions, the CNN approach might be used to categorise images of skin lesions. Several transfer learning models, such as Resnet50, InceptionV3, and Inception Resnet, were then used for fine-tuning. The uniqueness and contribution of this study are the preprocessing stages using ESRGAN and the testing of various models (including the intended CNN, Resnet50, InceptionV3, and Inception Resnet). Results from the model we developed matched those from the pretrained model exactly. The efficiency of the suggested strategy was proved by simulations using the ISIC 2018 skin lesion dataset. In terms of accuracy, the CNN model performed better than the Resnet50 (83.7%), InceptionV3 (85.8%), and Inception Resnet (84%) models." @default.
- W4367349820 created "2023-04-30" @default.
- W4367349820 creator A5000649596 @default.
- W4367349820 creator A5002382441 @default.
- W4367349820 creator A5014656893 @default.
- W4367349820 creator A5023127607 @default.
- W4367349820 creator A5037354259 @default.
- W4367349820 creator A5081734334 @default.
- W4367349820 date "2023-03-02" @default.
- W4367349820 modified "2023-09-27" @default.
- W4367349820 title "Computer-Aided Detection of Skin Cancer Detection from Lesion Images via Deep-Learning Techniques" @default.
- W4367349820 doi "https://doi.org/10.17762/ijritcc.v11i2s.6158" @default.
- W4367349820 hasPublicationYear "2023" @default.
- W4367349820 type Work @default.
- W4367349820 citedByCount "0" @default.
- W4367349820 crossrefType "journal-article" @default.
- W4367349820 hasAuthorship W4367349820A5000649596 @default.
- W4367349820 hasAuthorship W4367349820A5002382441 @default.
- W4367349820 hasAuthorship W4367349820A5014656893 @default.
- W4367349820 hasAuthorship W4367349820A5023127607 @default.
- W4367349820 hasAuthorship W4367349820A5037354259 @default.
- W4367349820 hasAuthorship W4367349820A5081734334 @default.
- W4367349820 hasBestOaLocation W43673498201 @default.
- W4367349820 hasConcept C108583219 @default.
- W4367349820 hasConcept C121608353 @default.
- W4367349820 hasConcept C126322002 @default.
- W4367349820 hasConcept C142724271 @default.
- W4367349820 hasConcept C153180895 @default.
- W4367349820 hasConcept C154945302 @default.
- W4367349820 hasConcept C16005928 @default.
- W4367349820 hasConcept C2777658100 @default.
- W4367349820 hasConcept C2777789703 @default.
- W4367349820 hasConcept C2781156865 @default.
- W4367349820 hasConcept C2988168687 @default.
- W4367349820 hasConcept C34736171 @default.
- W4367349820 hasConcept C41008148 @default.
- W4367349820 hasConcept C502942594 @default.
- W4367349820 hasConcept C71924100 @default.
- W4367349820 hasConcept C81363708 @default.
- W4367349820 hasConceptScore W4367349820C108583219 @default.
- W4367349820 hasConceptScore W4367349820C121608353 @default.
- W4367349820 hasConceptScore W4367349820C126322002 @default.
- W4367349820 hasConceptScore W4367349820C142724271 @default.
- W4367349820 hasConceptScore W4367349820C153180895 @default.
- W4367349820 hasConceptScore W4367349820C154945302 @default.
- W4367349820 hasConceptScore W4367349820C16005928 @default.
- W4367349820 hasConceptScore W4367349820C2777658100 @default.
- W4367349820 hasConceptScore W4367349820C2777789703 @default.
- W4367349820 hasConceptScore W4367349820C2781156865 @default.
- W4367349820 hasConceptScore W4367349820C2988168687 @default.
- W4367349820 hasConceptScore W4367349820C34736171 @default.
- W4367349820 hasConceptScore W4367349820C41008148 @default.
- W4367349820 hasConceptScore W4367349820C502942594 @default.
- W4367349820 hasConceptScore W4367349820C71924100 @default.
- W4367349820 hasConceptScore W4367349820C81363708 @default.
- W4367349820 hasIssue "2s" @default.
- W4367349820 hasLocation W43673498201 @default.
- W4367349820 hasOpenAccess W4367349820 @default.
- W4367349820 hasPrimaryLocation W43673498201 @default.
- W4367349820 hasRelatedWork W2738221750 @default.
- W4367349820 hasRelatedWork W2977314777 @default.
- W4367349820 hasRelatedWork W2996856019 @default.
- W4367349820 hasRelatedWork W3135779218 @default.
- W4367349820 hasRelatedWork W3156786002 @default.
- W4367349820 hasRelatedWork W3159690776 @default.
- W4367349820 hasRelatedWork W3202278117 @default.
- W4367349820 hasRelatedWork W4211209597 @default.
- W4367349820 hasRelatedWork W4312980043 @default.
- W4367349820 hasRelatedWork W564581980 @default.
- W4367349820 hasVolume "11" @default.
- W4367349820 isParatext "false" @default.
- W4367349820 isRetracted "false" @default.
- W4367349820 workType "article" @default.