Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367355093> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4367355093 endingPage "123" @default.
- W4367355093 startingPage "114" @default.
- W4367355093 abstract "Traffic sign recognition is an essential phase for intelligent autonomous driving systems. In this work, we have presented a recognition solution which is based on the classification performed by supervised learning method through deep learning an artificial using Convolutional Neural Network (CNN). Three pre-trained neural networks such as, GoogLeNet, VGG-16, AlexNet, were adapted for transfer learning algorithm. In order to improve the classification accuracy and to solve the problem of the insufficient amount of training dataset or the unequal number of images for each class, we have used the data augmentation technique applied on German Traffic Sign Benchmark dataset (GTSRB). The obtained experimental results show that the size of the dataset as the number of training images has a significant impact on the classification accuracy of the CNN model. The number of images was increased from 51,840 to 96,750 images by using data augmentation technique. Therefore the classification accuracy was increased from 86.72% to 97.33%." @default.
- W4367355093 created "2023-04-30" @default.
- W4367355093 creator A5024559978 @default.
- W4367355093 creator A5027801458 @default.
- W4367355093 creator A5062898575 @default.
- W4367355093 creator A5073672777 @default.
- W4367355093 creator A5085775826 @default.
- W4367355093 date "2023-01-01" @default.
- W4367355093 modified "2023-10-01" @default.
- W4367355093 title "Data Augmentation and Deep Learning Applied for Traffic Signs Image Classification" @default.
- W4367355093 cites W1566134554 @default.
- W4367355093 cites W1584308190 @default.
- W4367355093 cites W1978736542 @default.
- W4367355093 cites W2097117768 @default.
- W4367355093 cites W2108598243 @default.
- W4367355093 cites W2112796928 @default.
- W4367355093 cites W2117876524 @default.
- W4367355093 cites W2147800946 @default.
- W4367355093 cites W2460583509 @default.
- W4367355093 cites W2531044305 @default.
- W4367355093 cites W2618530766 @default.
- W4367355093 cites W2789876780 @default.
- W4367355093 cites W2809598685 @default.
- W4367355093 cites W2896842408 @default.
- W4367355093 cites W2954996726 @default.
- W4367355093 cites W3175290031 @default.
- W4367355093 cites W3185313289 @default.
- W4367355093 cites W4210338512 @default.
- W4367355093 cites W4224111438 @default.
- W4367355093 doi "https://doi.org/10.1007/978-3-031-29860-8_12" @default.
- W4367355093 hasPublicationYear "2023" @default.
- W4367355093 type Work @default.
- W4367355093 citedByCount "0" @default.
- W4367355093 crossrefType "book-chapter" @default.
- W4367355093 hasAuthorship W4367355093A5024559978 @default.
- W4367355093 hasAuthorship W4367355093A5027801458 @default.
- W4367355093 hasAuthorship W4367355093A5062898575 @default.
- W4367355093 hasAuthorship W4367355093A5073672777 @default.
- W4367355093 hasAuthorship W4367355093A5085775826 @default.
- W4367355093 hasConcept C108583219 @default.
- W4367355093 hasConcept C115961682 @default.
- W4367355093 hasConcept C119857082 @default.
- W4367355093 hasConcept C13280743 @default.
- W4367355093 hasConcept C134306372 @default.
- W4367355093 hasConcept C139676723 @default.
- W4367355093 hasConcept C150899416 @default.
- W4367355093 hasConcept C153180895 @default.
- W4367355093 hasConcept C154945302 @default.
- W4367355093 hasConcept C185798385 @default.
- W4367355093 hasConcept C205649164 @default.
- W4367355093 hasConcept C2983860417 @default.
- W4367355093 hasConcept C33923547 @default.
- W4367355093 hasConcept C41008148 @default.
- W4367355093 hasConcept C50644808 @default.
- W4367355093 hasConcept C6528762 @default.
- W4367355093 hasConcept C75294576 @default.
- W4367355093 hasConcept C81363708 @default.
- W4367355093 hasConceptScore W4367355093C108583219 @default.
- W4367355093 hasConceptScore W4367355093C115961682 @default.
- W4367355093 hasConceptScore W4367355093C119857082 @default.
- W4367355093 hasConceptScore W4367355093C13280743 @default.
- W4367355093 hasConceptScore W4367355093C134306372 @default.
- W4367355093 hasConceptScore W4367355093C139676723 @default.
- W4367355093 hasConceptScore W4367355093C150899416 @default.
- W4367355093 hasConceptScore W4367355093C153180895 @default.
- W4367355093 hasConceptScore W4367355093C154945302 @default.
- W4367355093 hasConceptScore W4367355093C185798385 @default.
- W4367355093 hasConceptScore W4367355093C205649164 @default.
- W4367355093 hasConceptScore W4367355093C2983860417 @default.
- W4367355093 hasConceptScore W4367355093C33923547 @default.
- W4367355093 hasConceptScore W4367355093C41008148 @default.
- W4367355093 hasConceptScore W4367355093C50644808 @default.
- W4367355093 hasConceptScore W4367355093C6528762 @default.
- W4367355093 hasConceptScore W4367355093C75294576 @default.
- W4367355093 hasConceptScore W4367355093C81363708 @default.
- W4367355093 hasLocation W43673550931 @default.
- W4367355093 hasOpenAccess W4367355093 @default.
- W4367355093 hasPrimaryLocation W43673550931 @default.
- W4367355093 hasRelatedWork W2738221750 @default.
- W4367355093 hasRelatedWork W2963958939 @default.
- W4367355093 hasRelatedWork W2997709384 @default.
- W4367355093 hasRelatedWork W3012393889 @default.
- W4367355093 hasRelatedWork W3015723412 @default.
- W4367355093 hasRelatedWork W3118457286 @default.
- W4367355093 hasRelatedWork W3139267523 @default.
- W4367355093 hasRelatedWork W3189091156 @default.
- W4367355093 hasRelatedWork W4220996320 @default.
- W4367355093 hasRelatedWork W4366224123 @default.
- W4367355093 isParatext "false" @default.
- W4367355093 isRetracted "false" @default.
- W4367355093 workType "book-chapter" @default.