Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367358312> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4367358312 endingPage "30" @default.
- W4367358312 startingPage "18" @default.
- W4367358312 abstract "Unmanned aerial vehicles (UAV) or drones play many roles in a modern smart city such as the delivery of goods, mapping real-time road traffic and monitoring pollution. The ability of drones to perform these functions often requires the support of machine learning technology. However, traditional machine learning models for drones encounter data privacy problems, communication costs and energy limitations. Federated Learning, an emerging distributed machine learning approach, is an excellent solution to address these issues. Federated learning (FL) allows drones to train local models without transmitting raw data. However, existing FL requires a central server to aggregate the trained model parameters of the UAV. A failure of the central server can significantly impact the overall training. In this paper, we propose two aggregation methods: Commutative FL and Alternate FL, based on the existing architecture of decentralised Federated Learning for UAV Networks (DFL-UN) by adding a unique aggregation method of decentralised FL. Those two methods can effectively control energy consumption and communication cost by controlling the number of local training epochs, local communication, and global communication. The simulation results of the proposed training methods are also presented to verify the feasibility and efficiency of the architecture compared with two benchmark methods (e.g. standard machine learning training and standard single aggregation server training). The simulation results show that the proposed methods outperform the benchmark methods in terms of operational stability, energy consumption and communication cost." @default.
- W4367358312 created "2023-04-30" @default.
- W4367358312 creator A5050055136 @default.
- W4367358312 creator A5054809100 @default.
- W4367358312 creator A5071480404 @default.
- W4367358312 date "2023-01-01" @default.
- W4367358312 modified "2023-10-01" @default.
- W4367358312 title "Decentralized Federated Learning Methods for Reducing Communication Cost and Energy Consumption in UAV Networks" @default.
- W4367358312 cites W2949650786 @default.
- W4367358312 cites W3011766871 @default.
- W4367358312 cites W3021874845 @default.
- W4367358312 cites W3034653302 @default.
- W4367358312 cites W3103802018 @default.
- W4367358312 cites W3109847748 @default.
- W4367358312 cites W3135231128 @default.
- W4367358312 cites W3138760940 @default.
- W4367358312 cites W4213147678 @default.
- W4367358312 cites W4287210410 @default.
- W4367358312 cites W4287995911 @default.
- W4367358312 cites W4294726226 @default.
- W4367358312 cites W4318619660 @default.
- W4367358312 doi "https://doi.org/10.1007/978-3-031-31891-7_2" @default.
- W4367358312 hasPublicationYear "2023" @default.
- W4367358312 type Work @default.
- W4367358312 citedByCount "0" @default.
- W4367358312 crossrefType "book-chapter" @default.
- W4367358312 hasAuthorship W4367358312A5050055136 @default.
- W4367358312 hasAuthorship W4367358312A5054809100 @default.
- W4367358312 hasAuthorship W4367358312A5071480404 @default.
- W4367358312 hasBestOaLocation W43673583122 @default.
- W4367358312 hasConcept C119599485 @default.
- W4367358312 hasConcept C119857082 @default.
- W4367358312 hasConcept C120314980 @default.
- W4367358312 hasConcept C127413603 @default.
- W4367358312 hasConcept C13280743 @default.
- W4367358312 hasConcept C154945302 @default.
- W4367358312 hasConcept C159985019 @default.
- W4367358312 hasConcept C185798385 @default.
- W4367358312 hasConcept C192562407 @default.
- W4367358312 hasConcept C205649164 @default.
- W4367358312 hasConcept C2780165032 @default.
- W4367358312 hasConcept C41008148 @default.
- W4367358312 hasConcept C4679612 @default.
- W4367358312 hasConcept C54355233 @default.
- W4367358312 hasConcept C59519942 @default.
- W4367358312 hasConcept C79403827 @default.
- W4367358312 hasConcept C86803240 @default.
- W4367358312 hasConceptScore W4367358312C119599485 @default.
- W4367358312 hasConceptScore W4367358312C119857082 @default.
- W4367358312 hasConceptScore W4367358312C120314980 @default.
- W4367358312 hasConceptScore W4367358312C127413603 @default.
- W4367358312 hasConceptScore W4367358312C13280743 @default.
- W4367358312 hasConceptScore W4367358312C154945302 @default.
- W4367358312 hasConceptScore W4367358312C159985019 @default.
- W4367358312 hasConceptScore W4367358312C185798385 @default.
- W4367358312 hasConceptScore W4367358312C192562407 @default.
- W4367358312 hasConceptScore W4367358312C205649164 @default.
- W4367358312 hasConceptScore W4367358312C2780165032 @default.
- W4367358312 hasConceptScore W4367358312C41008148 @default.
- W4367358312 hasConceptScore W4367358312C4679612 @default.
- W4367358312 hasConceptScore W4367358312C54355233 @default.
- W4367358312 hasConceptScore W4367358312C59519942 @default.
- W4367358312 hasConceptScore W4367358312C79403827 @default.
- W4367358312 hasConceptScore W4367358312C86803240 @default.
- W4367358312 hasLocation W43673583121 @default.
- W4367358312 hasLocation W43673583122 @default.
- W4367358312 hasOpenAccess W4367358312 @default.
- W4367358312 hasPrimaryLocation W43673583121 @default.
- W4367358312 hasRelatedWork W112744582 @default.
- W4367358312 hasRelatedWork W1485630101 @default.
- W4367358312 hasRelatedWork W2498017833 @default.
- W4367358312 hasRelatedWork W2961085424 @default.
- W4367358312 hasRelatedWork W3115329715 @default.
- W4367358312 hasRelatedWork W3116592636 @default.
- W4367358312 hasRelatedWork W4220882927 @default.
- W4367358312 hasRelatedWork W4281774852 @default.
- W4367358312 hasRelatedWork W4306674287 @default.
- W4367358312 hasRelatedWork W4360603849 @default.
- W4367358312 isParatext "false" @default.
- W4367358312 isRetracted "false" @default.
- W4367358312 workType "book-chapter" @default.