Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367360315> ?p ?o ?g. }
- W4367360315 endingPage "292" @default.
- W4367360315 startingPage "279" @default.
- W4367360315 abstract "Prediction investment share is one issue important right now, as many people now have to switch to digital investment. Many studies have been done to help Stock data prediction using machine learning. However, most machine learning models used complex and predictive only one variable row time. This research focuses on creating machine learning models using the VAR algorithm to predict several variables at a time with 1 model and provides recommendations, and uses the framework Cross Industry Standard Process for Data Mining (CRISP-DM) work in holding his research. The contribution of this research is to analyze whether the open, high, low, and close share price variables can be predicted based on each variable’s past data. Then build a forecasting model using machine learning technology, the Vector Autoregression (VAR) algorithm, and the Cross Industry Standard Process for Data Mining (CRISP-DM) method. From the resulting study, the VAR model is able to produce a model capable of predicting three variables at a time, that is, price highs, lows, and closes with each R2 Score is 0.60, 0.51, 0.54 and uses an optimal lag of 273 but for the variable price opening make a separate model with the lag difference is two lags and the R2 Score is 0.63. Based on the results of testing and evaluation of the use of R2, MAE, and RMSE scores on the model that was successfully created, it can be concluded that VAR can be used to predict the highest, lowest, and closing stock prices at once and has a fairly good accuracy even though the opening price variable must make a separation." @default.
- W4367360315 created "2023-04-30" @default.
- W4367360315 creator A5016832415 @default.
- W4367360315 creator A5046717261 @default.
- W4367360315 creator A5078506169 @default.
- W4367360315 creator A5091733690 @default.
- W4367360315 date "2023-01-01" @default.
- W4367360315 modified "2023-09-30" @default.
- W4367360315 title "Stock Investment Modeling and Prediction Using Vector Autoregression (VAR) and Cross Industry Standard Process for Data Mining (CRISP-DM)" @default.
- W4367360315 cites W2149507038 @default.
- W4367360315 cites W2477237354 @default.
- W4367360315 cites W2802806277 @default.
- W4367360315 cites W2893213349 @default.
- W4367360315 cites W2905749592 @default.
- W4367360315 cites W2913836720 @default.
- W4367360315 cites W2921555380 @default.
- W4367360315 cites W2936049613 @default.
- W4367360315 cites W2949782502 @default.
- W4367360315 cites W2952277250 @default.
- W4367360315 cites W2972388129 @default.
- W4367360315 cites W2974175349 @default.
- W4367360315 cites W2986166328 @default.
- W4367360315 cites W2998701638 @default.
- W4367360315 cites W3002166884 @default.
- W4367360315 cites W3007234765 @default.
- W4367360315 cites W3011382539 @default.
- W4367360315 cites W3027806095 @default.
- W4367360315 cites W3088454068 @default.
- W4367360315 cites W3110378470 @default.
- W4367360315 cites W3126187088 @default.
- W4367360315 cites W3127143178 @default.
- W4367360315 cites W3132783280 @default.
- W4367360315 cites W3196318841 @default.
- W4367360315 cites W4200249050 @default.
- W4367360315 cites W4211059140 @default.
- W4367360315 cites W4231752449 @default.
- W4367360315 doi "https://doi.org/10.1007/978-981-99-0248-4_20" @default.
- W4367360315 hasPublicationYear "2023" @default.
- W4367360315 type Work @default.
- W4367360315 citedByCount "0" @default.
- W4367360315 crossrefType "book-chapter" @default.
- W4367360315 hasAuthorship W4367360315A5016832415 @default.
- W4367360315 hasAuthorship W4367360315A5046717261 @default.
- W4367360315 hasAuthorship W4367360315A5078506169 @default.
- W4367360315 hasAuthorship W4367360315A5091733690 @default.
- W4367360315 hasConcept C119857082 @default.
- W4367360315 hasConcept C12267149 @default.
- W4367360315 hasConcept C124101348 @default.
- W4367360315 hasConcept C127413603 @default.
- W4367360315 hasConcept C133029050 @default.
- W4367360315 hasConcept C134306372 @default.
- W4367360315 hasConcept C149782125 @default.
- W4367360315 hasConcept C154945302 @default.
- W4367360315 hasConcept C159877910 @default.
- W4367360315 hasConcept C162324750 @default.
- W4367360315 hasConcept C17744445 @default.
- W4367360315 hasConcept C182365436 @default.
- W4367360315 hasConcept C199539241 @default.
- W4367360315 hasConcept C204036174 @default.
- W4367360315 hasConcept C27181475 @default.
- W4367360315 hasConcept C27548731 @default.
- W4367360315 hasConcept C31258907 @default.
- W4367360315 hasConcept C33923547 @default.
- W4367360315 hasConcept C41008148 @default.
- W4367360315 hasConcept C45804977 @default.
- W4367360315 hasConcept C75778745 @default.
- W4367360315 hasConcept C78519656 @default.
- W4367360315 hasConcept C94625758 @default.
- W4367360315 hasConceptScore W4367360315C119857082 @default.
- W4367360315 hasConceptScore W4367360315C12267149 @default.
- W4367360315 hasConceptScore W4367360315C124101348 @default.
- W4367360315 hasConceptScore W4367360315C127413603 @default.
- W4367360315 hasConceptScore W4367360315C133029050 @default.
- W4367360315 hasConceptScore W4367360315C134306372 @default.
- W4367360315 hasConceptScore W4367360315C149782125 @default.
- W4367360315 hasConceptScore W4367360315C154945302 @default.
- W4367360315 hasConceptScore W4367360315C159877910 @default.
- W4367360315 hasConceptScore W4367360315C162324750 @default.
- W4367360315 hasConceptScore W4367360315C17744445 @default.
- W4367360315 hasConceptScore W4367360315C182365436 @default.
- W4367360315 hasConceptScore W4367360315C199539241 @default.
- W4367360315 hasConceptScore W4367360315C204036174 @default.
- W4367360315 hasConceptScore W4367360315C27181475 @default.
- W4367360315 hasConceptScore W4367360315C27548731 @default.
- W4367360315 hasConceptScore W4367360315C31258907 @default.
- W4367360315 hasConceptScore W4367360315C33923547 @default.
- W4367360315 hasConceptScore W4367360315C41008148 @default.
- W4367360315 hasConceptScore W4367360315C45804977 @default.
- W4367360315 hasConceptScore W4367360315C75778745 @default.
- W4367360315 hasConceptScore W4367360315C78519656 @default.
- W4367360315 hasConceptScore W4367360315C94625758 @default.
- W4367360315 hasLocation W43673603151 @default.
- W4367360315 hasOpenAccess W4367360315 @default.
- W4367360315 hasPrimaryLocation W43673603151 @default.
- W4367360315 hasRelatedWork W1531853650 @default.
- W4367360315 hasRelatedWork W1585994508 @default.
- W4367360315 hasRelatedWork W1950869931 @default.
- W4367360315 hasRelatedWork W2139968568 @default.