Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367364508> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4367364508 endingPage "256" @default.
- W4367364508 startingPage "245" @default.
- W4367364508 abstract "Up to now, all the techniques discussed are working with subjects at certain stage of the machine learning development cycle. For example, verification techniques are working with trained models, and adversarial training is working with models when learning. However, to ensure the safety of critical systems, safety assurance is usually required to assure the development lifecycle and demonstrate to others (such as third party clients and authorities) that the system performs accordingly. In general, safety assurance activities include systematic processes for continuous monitoring and recording of the system’s safety performance, as well as evaluation of the safety processes and practices. In terms of the machine learning systems, safety assurance activities are to monitor, evaluate, and enforce safety measures for their lifecycle. Figure 16.1 presents the four stages in machine learning cycle when considering their working in safety critical systems: data preparation, model construction and model training, verification and validation, and runtime enforcement. In this chapter, we will discuss some perspectives (e.g., good practice, safety measurement) for each lifecycle stage, as indicated in Fig. 16.1. For example, for data preparation stage, we will present a workflow of good practice in preparing the training dataset, and discuss a measurement on determine its quality (i.e., the sufficiency). For runtime enforcement, we will discuss a few aspects that are essential to the safe deployment of the machine learning model in an environment, focusing on the partnership of AI and humans. We also discuss expected outcome of each stage." @default.
- W4367364508 created "2023-04-30" @default.
- W4367364508 creator A5020085889 @default.
- W4367364508 creator A5048979254 @default.
- W4367364508 creator A5074225885 @default.
- W4367364508 date "2012-02-24" @default.
- W4367364508 modified "2023-09-25" @default.
- W4367364508 title "Assurance of Machine Learning Lifecycle" @default.
- W4367364508 cites W2010146056 @default.
- W4367364508 cites W2029538739 @default.
- W4367364508 cites W2111453601 @default.
- W4367364508 cites W2889249015 @default.
- W4367364508 cites W3036286896 @default.
- W4367364508 cites W3123858477 @default.
- W4367364508 doi "https://doi.org/10.1007/978-981-19-6814-3_16" @default.
- W4367364508 hasPublicationYear "2012" @default.
- W4367364508 type Work @default.
- W4367364508 citedByCount "0" @default.
- W4367364508 crossrefType "book-chapter" @default.
- W4367364508 hasAuthorship W4367364508A5020085889 @default.
- W4367364508 hasAuthorship W4367364508A5048979254 @default.
- W4367364508 hasAuthorship W4367364508A5074225885 @default.
- W4367364508 hasConcept C10138342 @default.
- W4367364508 hasConcept C105339364 @default.
- W4367364508 hasConcept C106436119 @default.
- W4367364508 hasConcept C115903868 @default.
- W4367364508 hasConcept C127413603 @default.
- W4367364508 hasConcept C132835097 @default.
- W4367364508 hasConcept C154945302 @default.
- W4367364508 hasConcept C162324750 @default.
- W4367364508 hasConcept C177212765 @default.
- W4367364508 hasConcept C17744445 @default.
- W4367364508 hasConcept C195094911 @default.
- W4367364508 hasConcept C199539241 @default.
- W4367364508 hasConcept C200601418 @default.
- W4367364508 hasConcept C201995342 @default.
- W4367364508 hasConcept C21547014 @default.
- W4367364508 hasConcept C2778618615 @default.
- W4367364508 hasConcept C2779777834 @default.
- W4367364508 hasConcept C2780234205 @default.
- W4367364508 hasConcept C41008148 @default.
- W4367364508 hasConcept C71750763 @default.
- W4367364508 hasConcept C77088390 @default.
- W4367364508 hasConceptScore W4367364508C10138342 @default.
- W4367364508 hasConceptScore W4367364508C105339364 @default.
- W4367364508 hasConceptScore W4367364508C106436119 @default.
- W4367364508 hasConceptScore W4367364508C115903868 @default.
- W4367364508 hasConceptScore W4367364508C127413603 @default.
- W4367364508 hasConceptScore W4367364508C132835097 @default.
- W4367364508 hasConceptScore W4367364508C154945302 @default.
- W4367364508 hasConceptScore W4367364508C162324750 @default.
- W4367364508 hasConceptScore W4367364508C177212765 @default.
- W4367364508 hasConceptScore W4367364508C17744445 @default.
- W4367364508 hasConceptScore W4367364508C195094911 @default.
- W4367364508 hasConceptScore W4367364508C199539241 @default.
- W4367364508 hasConceptScore W4367364508C200601418 @default.
- W4367364508 hasConceptScore W4367364508C201995342 @default.
- W4367364508 hasConceptScore W4367364508C21547014 @default.
- W4367364508 hasConceptScore W4367364508C2778618615 @default.
- W4367364508 hasConceptScore W4367364508C2779777834 @default.
- W4367364508 hasConceptScore W4367364508C2780234205 @default.
- W4367364508 hasConceptScore W4367364508C41008148 @default.
- W4367364508 hasConceptScore W4367364508C71750763 @default.
- W4367364508 hasConceptScore W4367364508C77088390 @default.
- W4367364508 hasLocation W43673645081 @default.
- W4367364508 hasOpenAccess W4367364508 @default.
- W4367364508 hasPrimaryLocation W43673645081 @default.
- W4367364508 hasRelatedWork W2028085523 @default.
- W4367364508 hasRelatedWork W2054311641 @default.
- W4367364508 hasRelatedWork W2121153 @default.
- W4367364508 hasRelatedWork W2132112382 @default.
- W4367364508 hasRelatedWork W2158592871 @default.
- W4367364508 hasRelatedWork W2293505824 @default.
- W4367364508 hasRelatedWork W2357542477 @default.
- W4367364508 hasRelatedWork W2579956259 @default.
- W4367364508 hasRelatedWork W2890922382 @default.
- W4367364508 hasRelatedWork W3046779266 @default.
- W4367364508 isParatext "false" @default.
- W4367364508 isRetracted "false" @default.
- W4367364508 workType "book-chapter" @default.