Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367366254> ?p ?o ?g. }
- W4367366254 abstract "Abstract High-dimensional clinical data are becoming more accessible in biobank-scale datasets. However, effectively utilizing high-dimensional clinical data for genetic discovery remains challenging. Here we introduce a general deep learning-based framework, REpresentation learning for Genetic discovery on Low-dimensional Embeddings (REGLE), for discovering associations between genetic variants and high-dimensional clinical data. REGLE uses convolutional variational autoencoders to compute a non-linear, low-dimensional, disentangled embedding of the data with highly heritable individual components. REGLE can incorporate expert-defined or clinical features and provides a framework to create accurate disease-specific polygenic risk scores (PRS) in datasets which have minimal expert phenotyping. We apply REGLE to both respiratory and circulatory systems: spirograms which measure lung function and photoplethysmograms (PPG) which measure blood volume changes. Genome-wide association studies on REGLE embeddings identify more genome-wide significant loci than existing methods and replicate known loci for both spirograms and PPG, demonstrating the generality of the framework. Furthermore, these embeddings are associated with overall survival. Finally, we construct a set of PRSs that improve predictive performance of asthma, chronic obstructive pulmonary disease, hypertension, and systolic blood pressure in multiple biobanks. Thus, REGLE embeddings can quantify clinically relevant features that are not currently captured in a standardized or automated way." @default.
- W4367366254 created "2023-04-30" @default.
- W4367366254 creator A5008522290 @default.
- W4367366254 creator A5016076793 @default.
- W4367366254 creator A5016230870 @default.
- W4367366254 creator A5018495347 @default.
- W4367366254 creator A5021183446 @default.
- W4367366254 creator A5033010930 @default.
- W4367366254 creator A5037762121 @default.
- W4367366254 creator A5041347970 @default.
- W4367366254 creator A5058039712 @default.
- W4367366254 creator A5059386391 @default.
- W4367366254 creator A5062661345 @default.
- W4367366254 creator A5065599368 @default.
- W4367366254 creator A5071154269 @default.
- W4367366254 creator A5081217089 @default.
- W4367366254 creator A5088133250 @default.
- W4367366254 creator A5091102480 @default.
- W4367366254 date "2023-04-29" @default.
- W4367366254 modified "2023-09-30" @default.
- W4367366254 title "Unsupervised representation learning improves genomic discovery for lung function and respiratory disease prediction" @default.
- W4367366254 cites W1763507289 @default.
- W4367366254 cites W1940713640 @default.
- W4367366254 cites W1966775465 @default.
- W4367366254 cites W1979594866 @default.
- W4367366254 cites W2005623173 @default.
- W4367366254 cites W2028416113 @default.
- W4367366254 cites W2034176029 @default.
- W4367366254 cites W2037549735 @default.
- W4367366254 cites W2047692880 @default.
- W4367366254 cites W2071278577 @default.
- W4367366254 cites W2082704080 @default.
- W4367366254 cites W2082907106 @default.
- W4367366254 cites W2083872334 @default.
- W4367366254 cites W2090011605 @default.
- W4367366254 cites W2099085143 @default.
- W4367366254 cites W2100133323 @default.
- W4367366254 cites W2125078269 @default.
- W4367366254 cites W2127951128 @default.
- W4367366254 cites W2142510360 @default.
- W4367366254 cites W2145025818 @default.
- W4367366254 cites W2151950656 @default.
- W4367366254 cites W2153860431 @default.
- W4367366254 cites W2161619432 @default.
- W4367366254 cites W2161633633 @default.
- W4367366254 cites W2163267243 @default.
- W4367366254 cites W2163922914 @default.
- W4367366254 cites W2294418644 @default.
- W4367366254 cites W2294798173 @default.
- W4367366254 cites W2510973425 @default.
- W4367366254 cites W2558208069 @default.
- W4367366254 cites W2784666693 @default.
- W4367366254 cites W2895693082 @default.
- W4367366254 cites W2914899943 @default.
- W4367366254 cites W2921358727 @default.
- W4367366254 cites W2924473034 @default.
- W4367366254 cites W2932671560 @default.
- W4367366254 cites W2947236019 @default.
- W4367366254 cites W2950131036 @default.
- W4367366254 cites W2950598813 @default.
- W4367366254 cites W2950958620 @default.
- W4367366254 cites W2951496730 @default.
- W4367366254 cites W2952383525 @default.
- W4367366254 cites W3081407028 @default.
- W4367366254 cites W3086703412 @default.
- W4367366254 cites W3096831136 @default.
- W4367366254 cites W3164496322 @default.
- W4367366254 cites W3165878141 @default.
- W4367366254 cites W4251661330 @default.
- W4367366254 cites W4281659896 @default.
- W4367366254 cites W4281770776 @default.
- W4367366254 cites W4282547801 @default.
- W4367366254 cites W4282549516 @default.
- W4367366254 cites W4282927968 @default.
- W4367366254 cites W4283820899 @default.
- W4367366254 cites W4308616307 @default.
- W4367366254 cites W4311415873 @default.
- W4367366254 cites W4313280090 @default.
- W4367366254 cites W4324045235 @default.
- W4367366254 cites W4366163170 @default.
- W4367366254 cites W4367318518 @default.
- W4367366254 cites W4367366184 @default.
- W4367366254 cites W84894356 @default.
- W4367366254 cites W988990059 @default.
- W4367366254 doi "https://doi.org/10.1101/2023.04.28.23289285" @default.
- W4367366254 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37163049" @default.
- W4367366254 hasPublicationYear "2023" @default.
- W4367366254 type Work @default.
- W4367366254 citedByCount "1" @default.
- W4367366254 countsByYear W43673662542023 @default.
- W4367366254 crossrefType "posted-content" @default.
- W4367366254 hasAuthorship W4367366254A5008522290 @default.
- W4367366254 hasAuthorship W4367366254A5016076793 @default.
- W4367366254 hasAuthorship W4367366254A5016230870 @default.
- W4367366254 hasAuthorship W4367366254A5018495347 @default.
- W4367366254 hasAuthorship W4367366254A5021183446 @default.
- W4367366254 hasAuthorship W4367366254A5033010930 @default.
- W4367366254 hasAuthorship W4367366254A5037762121 @default.
- W4367366254 hasAuthorship W4367366254A5041347970 @default.
- W4367366254 hasAuthorship W4367366254A5058039712 @default.