Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367366455> ?p ?o ?g. }
- W4367366455 endingPage "4044" @default.
- W4367366455 startingPage "4033" @default.
- W4367366455 abstract "Viruses have killed and infected millions of people across the world. It causes several chronic diseases like COVID-19, HIV, and hepatitis. To cope with such diseases and virus infections, antiviral peptides (AVPs) have been applied in the design of drugs. Keeping in view the significant role in pharmaceutical industry and other research fields, identification of AVPs is highly indispensable. In this connection, experimental and computational methods were proposed to identify AVPs. However, more accurate predictors for boosting AVPs identification are highly desirable. This work presents a thorough study and reports the available predictors of AVPs. We explained applied datasets, feature representation approaches, classification algorithms, and evaluation parameters of performance. In this study, the limitations of the existing studies and the best methods were emphasized. Provided the pros and cons of the applied classifiers. The future insights demonstrate efficient feature encoding approaches, best feature optimization schemes, and effective classification techniques that can improve the performance of novel method for accurate prediction of AVPs." @default.
- W4367366455 created "2023-04-30" @default.
- W4367366455 creator A5025400168 @default.
- W4367366455 creator A5034394212 @default.
- W4367366455 creator A5040908419 @default.
- W4367366455 creator A5059292065 @default.
- W4367366455 creator A5086761503 @default.
- W4367366455 date "2023-04-29" @default.
- W4367366455 modified "2023-09-30" @default.
- W4367366455 title "Recent Advances in Machine Learning-Based Models for Prediction of Antiviral Peptides" @default.
- W4367366455 cites W1485819570 @default.
- W4367366455 cites W1966057572 @default.
- W4367366455 cites W1979016574 @default.
- W4367366455 cites W1983990793 @default.
- W4367366455 cites W1996989509 @default.
- W4367366455 cites W2016319093 @default.
- W4367366455 cites W2029904979 @default.
- W4367366455 cites W2033720851 @default.
- W4367366455 cites W2036329916 @default.
- W4367366455 cites W2041850015 @default.
- W4367366455 cites W2050803124 @default.
- W4367366455 cites W2095864746 @default.
- W4367366455 cites W2097834518 @default.
- W4367366455 cites W2103940020 @default.
- W4367366455 cites W2110957748 @default.
- W4367366455 cites W2132292391 @default.
- W4367366455 cites W2145036462 @default.
- W4367366455 cites W2145957695 @default.
- W4367366455 cites W2160257187 @default.
- W4367366455 cites W2168020168 @default.
- W4367366455 cites W2319045013 @default.
- W4367366455 cites W2370182361 @default.
- W4367366455 cites W2489559155 @default.
- W4367366455 cites W2548077108 @default.
- W4367366455 cites W2625609557 @default.
- W4367366455 cites W2765182214 @default.
- W4367366455 cites W2791485763 @default.
- W4367366455 cites W2793168264 @default.
- W4367366455 cites W2807186140 @default.
- W4367366455 cites W2888317147 @default.
- W4367366455 cites W2888408766 @default.
- W4367366455 cites W2892741787 @default.
- W4367366455 cites W2895576137 @default.
- W4367366455 cites W2896195409 @default.
- W4367366455 cites W2910541852 @default.
- W4367366455 cites W2911964244 @default.
- W4367366455 cites W2912614123 @default.
- W4367366455 cites W2917603237 @default.
- W4367366455 cites W2944052077 @default.
- W4367366455 cites W2946492269 @default.
- W4367366455 cites W2967209289 @default.
- W4367366455 cites W2970541594 @default.
- W4367366455 cites W2972445543 @default.
- W4367366455 cites W2987011545 @default.
- W4367366455 cites W3010907323 @default.
- W4367366455 cites W3043293280 @default.
- W4367366455 cites W3044140833 @default.
- W4367366455 cites W3082185526 @default.
- W4367366455 cites W3095560944 @default.
- W4367366455 cites W3109659125 @default.
- W4367366455 cites W3117145375 @default.
- W4367366455 cites W3131869701 @default.
- W4367366455 cites W3135368824 @default.
- W4367366455 cites W3184871101 @default.
- W4367366455 cites W3194982939 @default.
- W4367366455 cites W3208498407 @default.
- W4367366455 cites W4200142263 @default.
- W4367366455 cites W4210522876 @default.
- W4367366455 cites W4214632834 @default.
- W4367366455 cites W4214656865 @default.
- W4367366455 cites W4220900187 @default.
- W4367366455 cites W4224095040 @default.
- W4367366455 cites W4256377019 @default.
- W4367366455 cites W4281480754 @default.
- W4367366455 cites W4282929795 @default.
- W4367366455 cites W4284973298 @default.
- W4367366455 cites W4293374003 @default.
- W4367366455 cites W4298325713 @default.
- W4367366455 cites W4307565334 @default.
- W4367366455 cites W4307818652 @default.
- W4367366455 cites W4310415868 @default.
- W4367366455 cites W4311447039 @default.
- W4367366455 cites W4317039319 @default.
- W4367366455 cites W4378627970 @default.
- W4367366455 doi "https://doi.org/10.1007/s11831-023-09933-w" @default.
- W4367366455 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37359746" @default.
- W4367366455 hasPublicationYear "2023" @default.
- W4367366455 type Work @default.
- W4367366455 citedByCount "3" @default.
- W4367366455 countsByYear W43673664552023 @default.
- W4367366455 crossrefType "journal-article" @default.
- W4367366455 hasAuthorship W4367366455A5025400168 @default.
- W4367366455 hasAuthorship W4367366455A5034394212 @default.
- W4367366455 hasAuthorship W4367366455A5040908419 @default.
- W4367366455 hasAuthorship W4367366455A5059292065 @default.
- W4367366455 hasAuthorship W4367366455A5086761503 @default.
- W4367366455 hasBestOaLocation W43673664551 @default.
- W4367366455 hasConcept C116834253 @default.