Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367367994> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4367367994 abstract "This study focuses on optimizing the process of biofuel production from citrus peel using the Design of Experiments (DOE) technique. This study aims to determine the optimal values for the variables that have a significant impact on the production of biofuel. The variance within and between data groups was determined using the analysis of variance (ANOVA) table. The ANOVA table shows how much of the response variable's variation (biofuel production) can be explained by the independent variables (A, B, C, D, E, AB, AC, AD, AE, and BJ) and how much is caused by random error. The ANOVA table comprises of three primary parts: the F-statistic, the p-value, the df, the mean square (MS), the source of variation, and the sum of squares (SS). The wellspring of variety alludes to the beginning of the information variety, which can be either the lingering or the model. The amount of squares estimates the information's changeability, with the absolute amount of squares addressing the amount of the squared deviations of the genuine qualities from the mean worth. The residual is the sum of the squared deviations from the predicted values of the actual values, while the model's sum of squares is the sum of the squared deviations from the mean of the predicted values. The model has 10 degrees of freedom (the number of independent variables) and the residual has 4 degrees of freedom (the number of observations minus the number of independent variables). These degrees of freedom represent the number of independent pieces of information used to estimate a parameter. The mean square, which indicates the typical amount of variation for each variation source, is calculated by dividing the sum of squares by the degrees of freedom. The degree to which the model explains the variation in the data is indicated by the F-statistic, which is the ratio of the model's mean square to the residual's mean square. The probability of obtaining an F-statistic that is as large as the one observed if the null hypothesis is true is represented by the p-value. The independent variables' insignificant impact on biofuel production is the null hypothesis in this instance. The model's p-esteem in this study is under 0.05, demonstrating that the free factors essentially affect biofuel creation and that the model is genuinely huge. In addition, the model is significant because the F-statistic is relatively large in comparison to the F-distribution for the 10 and 4 degrees of freedom, respectively. The estimated coefficients for the linear regression model used to investigate the production of biofuel from citrus peel can be found in the ANOVA coefficients table. The table provides a list of the intercept and independent variables' coefficients, standard errors, t-values, and p-values. When all of the independent variables are zero, the intercept has a coefficient of 0.0672, indicating the estimated value of the response variable. The fact that the intercept does not differ significantly from zero is supported by the fact that its p-value is not significant. The fact that the coefficients of the independent variables A, E, AC, AD, AE, and BJ are not statistically significant indicates that these variables have little impact on the response variable. On the other hand, the positive coefficients and significant p-values of the independent variables B and C suggest that an increase in their values could result in an increase in the production of biofuel from citrus peel. In conclusion, the key variables that influence the production of biofuel from citrus peel have been identified thanks to the use of the Design of Experiments (DOE) method. According to the findings of this study, an increase in the production of biofuel from citrus peel may result from an increase in the values of the independent variables B and C. The development of environmentally friendly energy sources and the optimization of biofuel production processes will benefit greatly from these findings" @default.
- W4367367994 created "2023-04-30" @default.
- W4367367994 date "2023-04-20" @default.
- W4367367994 modified "2023-10-01" @default.
- W4367367994 title "Optimization of Biofuel Production Process Using Design of Experiments (Doe)" @default.
- W4367367994 doi "https://doi.org/10.33140/pcii.06.02.06" @default.
- W4367367994 hasPublicationYear "2023" @default.
- W4367367994 type Work @default.
- W4367367994 citedByCount "0" @default.
- W4367367994 crossrefType "journal-article" @default.
- W4367367994 hasBestOaLocation W43673679941 @default.
- W4367367994 hasConcept C105795698 @default.
- W4367367994 hasConcept C11413529 @default.
- W4367367994 hasConcept C121332964 @default.
- W4367367994 hasConcept C121955636 @default.
- W4367367994 hasConcept C139719470 @default.
- W4367367994 hasConcept C139945424 @default.
- W4367367994 hasConcept C144133560 @default.
- W4367367994 hasConcept C150903083 @default.
- W4367367994 hasConcept C155512373 @default.
- W4367367994 hasConcept C162324750 @default.
- W4367367994 hasConcept C166811707 @default.
- W4367367994 hasConcept C196083921 @default.
- W4367367994 hasConcept C208081375 @default.
- W4367367994 hasConcept C27574286 @default.
- W4367367994 hasConcept C2778348673 @default.
- W4367367994 hasConcept C33923547 @default.
- W4367367994 hasConcept C45923927 @default.
- W4367367994 hasConcept C49392186 @default.
- W4367367994 hasConcept C49847556 @default.
- W4367367994 hasConcept C53991642 @default.
- W4367367994 hasConcept C54719702 @default.
- W4367367994 hasConcept C62520636 @default.
- W4367367994 hasConcept C86803240 @default.
- W4367367994 hasConcept C89128539 @default.
- W4367367994 hasConceptScore W4367367994C105795698 @default.
- W4367367994 hasConceptScore W4367367994C11413529 @default.
- W4367367994 hasConceptScore W4367367994C121332964 @default.
- W4367367994 hasConceptScore W4367367994C121955636 @default.
- W4367367994 hasConceptScore W4367367994C139719470 @default.
- W4367367994 hasConceptScore W4367367994C139945424 @default.
- W4367367994 hasConceptScore W4367367994C144133560 @default.
- W4367367994 hasConceptScore W4367367994C150903083 @default.
- W4367367994 hasConceptScore W4367367994C155512373 @default.
- W4367367994 hasConceptScore W4367367994C162324750 @default.
- W4367367994 hasConceptScore W4367367994C166811707 @default.
- W4367367994 hasConceptScore W4367367994C196083921 @default.
- W4367367994 hasConceptScore W4367367994C208081375 @default.
- W4367367994 hasConceptScore W4367367994C27574286 @default.
- W4367367994 hasConceptScore W4367367994C2778348673 @default.
- W4367367994 hasConceptScore W4367367994C33923547 @default.
- W4367367994 hasConceptScore W4367367994C45923927 @default.
- W4367367994 hasConceptScore W4367367994C49392186 @default.
- W4367367994 hasConceptScore W4367367994C49847556 @default.
- W4367367994 hasConceptScore W4367367994C53991642 @default.
- W4367367994 hasConceptScore W4367367994C54719702 @default.
- W4367367994 hasConceptScore W4367367994C62520636 @default.
- W4367367994 hasConceptScore W4367367994C86803240 @default.
- W4367367994 hasConceptScore W4367367994C89128539 @default.
- W4367367994 hasIssue "2" @default.
- W4367367994 hasLocation W43673679941 @default.
- W4367367994 hasOpenAccess W4367367994 @default.
- W4367367994 hasPrimaryLocation W43673679941 @default.
- W4367367994 hasRelatedWork W1520338190 @default.
- W4367367994 hasRelatedWork W1991217434 @default.
- W4367367994 hasRelatedWork W2027663088 @default.
- W4367367994 hasRelatedWork W2033936314 @default.
- W4367367994 hasRelatedWork W2040464743 @default.
- W4367367994 hasRelatedWork W2043417623 @default.
- W4367367994 hasRelatedWork W2071186623 @default.
- W4367367994 hasRelatedWork W2140335518 @default.
- W4367367994 hasRelatedWork W2154627047 @default.
- W4367367994 hasRelatedWork W2340776610 @default.
- W4367367994 hasVolume "6" @default.
- W4367367994 isParatext "false" @default.
- W4367367994 isRetracted "false" @default.
- W4367367994 workType "article" @default.