Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367369793> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4367369793 abstract "We present Analogical Networks, a model that encodes domain knowledge explicitly, in a collection of structured labelled 3D scenes, in addition to implicitly, as model parameters, and segments 3D object scenes with analogical reasoning: instead of mapping a scene to part segments directly, our model first retrieves related scenes from memory and their corresponding part structures, and then predicts analogous part structures for the input scene, via an end-to-end learnable modulation mechanism. By conditioning on more than one retrieved memories, compositions of structures are predicted, that mix and match parts across the retrieved memories. One-shot, few-shot or many-shot learning are treated uniformly in Analogical Networks, by conditioning on the appropriate set of memories, whether taken from a single, few or many memory exemplars, and inferring analogous parses. We show Analogical Networks are competitive with state-of-the-art 3D segmentation transformers in many-shot settings, and outperform them, as well as existing paradigms of meta-learning and few-shot learning, in few-shot settings. Analogical Networks successfully segment instances of novel object categories simply by expanding their memory, without any weight updates. Our code and models are publicly available in the project webpage: http://analogicalnets.github.io/." @default.
- W4367369793 created "2023-04-30" @default.
- W4367369793 creator A5005485315 @default.
- W4367369793 creator A5008661738 @default.
- W4367369793 creator A5028801762 @default.
- W4367369793 creator A5029932788 @default.
- W4367369793 creator A5072150711 @default.
- W4367369793 date "2023-04-27" @default.
- W4367369793 modified "2023-10-14" @default.
- W4367369793 title "Analogy-Forming Transformers for Few-Shot 3D Parsing" @default.
- W4367369793 doi "https://doi.org/10.48550/arxiv.2304.14382" @default.
- W4367369793 hasPublicationYear "2023" @default.
- W4367369793 type Work @default.
- W4367369793 citedByCount "0" @default.
- W4367369793 crossrefType "posted-content" @default.
- W4367369793 hasAuthorship W4367369793A5005485315 @default.
- W4367369793 hasAuthorship W4367369793A5008661738 @default.
- W4367369793 hasAuthorship W4367369793A5028801762 @default.
- W4367369793 hasAuthorship W4367369793A5029932788 @default.
- W4367369793 hasAuthorship W4367369793A5072150711 @default.
- W4367369793 hasBestOaLocation W43673697931 @default.
- W4367369793 hasConcept C120665830 @default.
- W4367369793 hasConcept C121332964 @default.
- W4367369793 hasConcept C138885662 @default.
- W4367369793 hasConcept C154945302 @default.
- W4367369793 hasConcept C165801399 @default.
- W4367369793 hasConcept C178790620 @default.
- W4367369793 hasConcept C185592680 @default.
- W4367369793 hasConcept C186644900 @default.
- W4367369793 hasConcept C204321447 @default.
- W4367369793 hasConcept C2778344882 @default.
- W4367369793 hasConcept C2781238097 @default.
- W4367369793 hasConcept C3019835501 @default.
- W4367369793 hasConcept C41008148 @default.
- W4367369793 hasConcept C41895202 @default.
- W4367369793 hasConcept C521332185 @default.
- W4367369793 hasConcept C62520636 @default.
- W4367369793 hasConcept C66322947 @default.
- W4367369793 hasConcept C89600930 @default.
- W4367369793 hasConceptScore W4367369793C120665830 @default.
- W4367369793 hasConceptScore W4367369793C121332964 @default.
- W4367369793 hasConceptScore W4367369793C138885662 @default.
- W4367369793 hasConceptScore W4367369793C154945302 @default.
- W4367369793 hasConceptScore W4367369793C165801399 @default.
- W4367369793 hasConceptScore W4367369793C178790620 @default.
- W4367369793 hasConceptScore W4367369793C185592680 @default.
- W4367369793 hasConceptScore W4367369793C186644900 @default.
- W4367369793 hasConceptScore W4367369793C204321447 @default.
- W4367369793 hasConceptScore W4367369793C2778344882 @default.
- W4367369793 hasConceptScore W4367369793C2781238097 @default.
- W4367369793 hasConceptScore W4367369793C3019835501 @default.
- W4367369793 hasConceptScore W4367369793C41008148 @default.
- W4367369793 hasConceptScore W4367369793C41895202 @default.
- W4367369793 hasConceptScore W4367369793C521332185 @default.
- W4367369793 hasConceptScore W4367369793C62520636 @default.
- W4367369793 hasConceptScore W4367369793C66322947 @default.
- W4367369793 hasConceptScore W4367369793C89600930 @default.
- W4367369793 hasLocation W43673697931 @default.
- W4367369793 hasOpenAccess W4367369793 @default.
- W4367369793 hasPrimaryLocation W43673697931 @default.
- W4367369793 hasRelatedWork W1552159754 @default.
- W4367369793 hasRelatedWork W1806995473 @default.
- W4367369793 hasRelatedWork W1978971213 @default.
- W4367369793 hasRelatedWork W1992419927 @default.
- W4367369793 hasRelatedWork W2167662847 @default.
- W4367369793 hasRelatedWork W2387675639 @default.
- W4367369793 hasRelatedWork W2502722637 @default.
- W4367369793 hasRelatedWork W3107474891 @default.
- W4367369793 hasRelatedWork W1551406738 @default.
- W4367369793 hasRelatedWork W2594281132 @default.
- W4367369793 isParatext "false" @default.
- W4367369793 isRetracted "false" @default.
- W4367369793 workType "article" @default.