Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367393487> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4367393487 abstract "A novel data-driven constitutive modeling approach is proposed, which combines the physics-informed nature of modeling based on continuum thermodynamics with the benefits of machine learning. This approach is demonstrated on strain-rate-sensitive soft materials. This model is based on the viscous dissipation-based visco-hyperelasticity framework where the total stress is decomposed into volumetric, isochoric hyperelastic, and isochoric viscous overstress contributions. It is shown that each of these stress components can be written as linear combinations of the components of an irreducible integrity basis. Three Gaussian process regression-based surrogate models are trained (one per stress component) between principal invariants of strain and strain rate tensors and the corresponding coefficients of the integrity basis components. It is demonstrated that this type of model construction enforces key physics-based constraints on the predicted responses: the second law of thermodynamics, the principles of local action and determinism, objectivity, the balance of angular momentum, an assumed reference state, isotropy, and limited memory. The three surrogate models that constitute our constitutive model are evaluated by training them on small-size numerically generated data sets corresponding to a single deformation mode and then analyzing their predictions over a much wider testing regime comprising multiple deformation modes. Our physics-informed data-driven constitutive model predictions are compared with the corresponding predictions of classical continuum thermodynamics-based and purely data-driven models. It is shown that our surrogate models can reasonably capture the stress-strain-strain rate responses in both training and testing regimes, and provide improvements in terms of prediction accuracy, generalizability to multiple deformation modes, and compatibility with limited data." @default.
- W4367393487 created "2023-04-30" @default.
- W4367393487 creator A5010955872 @default.
- W4367393487 creator A5058627053 @default.
- W4367393487 creator A5060261043 @default.
- W4367393487 creator A5063820996 @default.
- W4367393487 date "2023-04-26" @default.
- W4367393487 modified "2023-10-18" @default.
- W4367393487 title "Physics-informed Data-driven Discovery of Constitutive Models with Application to Strain-Rate-sensitive Soft Materials" @default.
- W4367393487 doi "https://doi.org/10.48550/arxiv.2304.13897" @default.
- W4367393487 hasPublicationYear "2023" @default.
- W4367393487 type Work @default.
- W4367393487 citedByCount "0" @default.
- W4367393487 crossrefType "posted-content" @default.
- W4367393487 hasAuthorship W4367393487A5010955872 @default.
- W4367393487 hasAuthorship W4367393487A5058627053 @default.
- W4367393487 hasAuthorship W4367393487A5060261043 @default.
- W4367393487 hasAuthorship W4367393487A5063820996 @default.
- W4367393487 hasBestOaLocation W43673934871 @default.
- W4367393487 hasConcept C121332964 @default.
- W4367393487 hasConcept C121864883 @default.
- W4367393487 hasConcept C135628077 @default.
- W4367393487 hasConcept C147370603 @default.
- W4367393487 hasConcept C149342994 @default.
- W4367393487 hasConcept C184050105 @default.
- W4367393487 hasConcept C202973686 @default.
- W4367393487 hasConcept C33332235 @default.
- W4367393487 hasConcept C57879066 @default.
- W4367393487 hasConcept C62520636 @default.
- W4367393487 hasConcept C74650414 @default.
- W4367393487 hasConcept C91556481 @default.
- W4367393487 hasConcept C97355855 @default.
- W4367393487 hasConceptScore W4367393487C121332964 @default.
- W4367393487 hasConceptScore W4367393487C121864883 @default.
- W4367393487 hasConceptScore W4367393487C135628077 @default.
- W4367393487 hasConceptScore W4367393487C147370603 @default.
- W4367393487 hasConceptScore W4367393487C149342994 @default.
- W4367393487 hasConceptScore W4367393487C184050105 @default.
- W4367393487 hasConceptScore W4367393487C202973686 @default.
- W4367393487 hasConceptScore W4367393487C33332235 @default.
- W4367393487 hasConceptScore W4367393487C57879066 @default.
- W4367393487 hasConceptScore W4367393487C62520636 @default.
- W4367393487 hasConceptScore W4367393487C74650414 @default.
- W4367393487 hasConceptScore W4367393487C91556481 @default.
- W4367393487 hasConceptScore W4367393487C97355855 @default.
- W4367393487 hasLocation W43673934871 @default.
- W4367393487 hasOpenAccess W4367393487 @default.
- W4367393487 hasPrimaryLocation W43673934871 @default.
- W4367393487 hasRelatedWork W2034167671 @default.
- W4367393487 hasRelatedWork W2062474801 @default.
- W4367393487 hasRelatedWork W2081631178 @default.
- W4367393487 hasRelatedWork W2148737878 @default.
- W4367393487 hasRelatedWork W2149759192 @default.
- W4367393487 hasRelatedWork W2431980858 @default.
- W4367393487 hasRelatedWork W2477628100 @default.
- W4367393487 hasRelatedWork W2795231249 @default.
- W4367393487 hasRelatedWork W3104799567 @default.
- W4367393487 hasRelatedWork W3117265692 @default.
- W4367393487 isParatext "false" @default.
- W4367393487 isRetracted "false" @default.
- W4367393487 workType "article" @default.