Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367394583> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4367394583 abstract "Abstract We prove the $$L^p$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> -boundedness for all $$p in (1,infty )$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of the first-order Riesz transforms $$X_j mathcal {L}^{-1/2}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>j</mml:mi> </mml:msub> <mml:msup> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> associated with the Laplacian $$mathcal {L}= -sum _{j=0}^n X_j^2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>=</mml:mo> <mml:mo>-</mml:mo> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mi>j</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> on the $$ax+b$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>a</mml:mi> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> </mml:math> group $$G = mathbb {R}^n rtimes mathbb {R}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>⋊</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> ; here $$X_0$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> and $$X_1,dots ,X_n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> are left-invariant vector fields on G in the directions of the factors $$mathbb {R}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>R</mml:mi> </mml:math> and $$mathbb {R}^n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> respectively. This settles a question left open in previous work of Hebisch and Steger (who proved the result for $$p le 2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> ) and of Gaudry and Sjögren (who only considered $$n=1=j$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>=</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:math> ). The main novelty here is that we can treat the case $$p in (2,infty )$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and include the Riesz transform in the direction of $$mathbb {R}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>R</mml:mi> </mml:math> ; an operator-valued Fourier multiplier theorem on $$mathbb {R}^n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> turns out to be key to this purpose. We also establish a weak type (1, 1) endpoint for the adjoint Riesz transforms in the direction of $$mathbb {R}^n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> . By transference, our results imply the $$L^p$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> -boundedness for $$p in (1,infty )$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of the first-order Riesz transforms associated with the Schrödinger operator $$-partial _s^2 + textrm{e}^{2s}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mo>-</mml:mo> <mml:msubsup> <mml:mi>∂</mml:mi> <mml:mi>s</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msup> <mml:mtext>e</mml:mtext> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>s</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> on the real line." @default.
- W4367394583 created "2023-04-30" @default.
- W4367394583 creator A5054324013 @default.
- W4367394583 date "2023-04-29" @default.
- W4367394583 modified "2023-10-14" @default.
- W4367394583 title "Riesz Transforms on $$ax+b$$ Groups" @default.
- W4367394583 cites W1214544074 @default.
- W4367394583 cites W147701826 @default.
- W4367394583 cites W1517344168 @default.
- W4367394583 cites W1572447128 @default.
- W4367394583 cites W1617754463 @default.
- W4367394583 cites W1655704955 @default.
- W4367394583 cites W1680920053 @default.
- W4367394583 cites W1819480188 @default.
- W4367394583 cites W1871058307 @default.
- W4367394583 cites W1976537873 @default.
- W4367394583 cites W1978941313 @default.
- W4367394583 cites W1982915844 @default.
- W4367394583 cites W1985148615 @default.
- W4367394583 cites W1999228765 @default.
- W4367394583 cites W1999955870 @default.
- W4367394583 cites W2031922801 @default.
- W4367394583 cites W2048026906 @default.
- W4367394583 cites W2049173141 @default.
- W4367394583 cites W2061757420 @default.
- W4367394583 cites W2063464216 @default.
- W4367394583 cites W2075102821 @default.
- W4367394583 cites W2076047308 @default.
- W4367394583 cites W2079186959 @default.
- W4367394583 cites W2098474757 @default.
- W4367394583 cites W2160928654 @default.
- W4367394583 cites W2237908454 @default.
- W4367394583 cites W2264327117 @default.
- W4367394583 cites W2310044761 @default.
- W4367394583 cites W2482762127 @default.
- W4367394583 cites W2564836132 @default.
- W4367394583 cites W2797875659 @default.
- W4367394583 cites W3094733044 @default.
- W4367394583 cites W3179217808 @default.
- W4367394583 cites W4253840677 @default.
- W4367394583 cites W4292024750 @default.
- W4367394583 cites W4300935444 @default.
- W4367394583 cites W4302577166 @default.
- W4367394583 cites W55267831 @default.
- W4367394583 cites W566072753 @default.
- W4367394583 cites W95920023 @default.
- W4367394583 doi "https://doi.org/10.1007/s12220-023-01289-8" @default.
- W4367394583 hasPublicationYear "2023" @default.
- W4367394583 type Work @default.
- W4367394583 citedByCount "0" @default.
- W4367394583 crossrefType "journal-article" @default.
- W4367394583 hasAuthorship W4367394583A5054324013 @default.
- W4367394583 hasBestOaLocation W43673945831 @default.
- W4367394583 hasConcept C11413529 @default.
- W4367394583 hasConcept C41008148 @default.
- W4367394583 hasConceptScore W4367394583C11413529 @default.
- W4367394583 hasConceptScore W4367394583C41008148 @default.
- W4367394583 hasFunder F4320309746 @default.
- W4367394583 hasIssue "7" @default.
- W4367394583 hasLocation W43673945831 @default.
- W4367394583 hasLocation W43673945832 @default.
- W4367394583 hasLocation W43673945833 @default.
- W4367394583 hasOpenAccess W4367394583 @default.
- W4367394583 hasPrimaryLocation W43673945831 @default.
- W4367394583 hasRelatedWork W2051487156 @default.
- W4367394583 hasRelatedWork W2052122378 @default.
- W4367394583 hasRelatedWork W2053286651 @default.
- W4367394583 hasRelatedWork W2073681303 @default.
- W4367394583 hasRelatedWork W2317200988 @default.
- W4367394583 hasRelatedWork W2544423928 @default.
- W4367394583 hasRelatedWork W2947381795 @default.
- W4367394583 hasRelatedWork W2181413294 @default.
- W4367394583 hasRelatedWork W2181743346 @default.
- W4367394583 hasRelatedWork W2187401768 @default.
- W4367394583 hasVolume "33" @default.
- W4367394583 isParatext "false" @default.
- W4367394583 isRetracted "false" @default.
- W4367394583 workType "article" @default.