Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367395368> ?p ?o ?g. }
- W4367395368 endingPage "11" @default.
- W4367395368 startingPage "1" @default.
- W4367395368 abstract "In recent few years, flying ad hoc networks are utilized more for interconnectivity. In the topological scenario of FANETs, IoT nodes are available on ground where UAVs collect information. Due to high mobility patterns of UAVs cause disruption where intruders easily deploy cyberattacks like DoS/DDoS. Flying ad hoc networks use to have UAVs, satellite, and base station in the physical structure. IoT-based UAV networks are having many applications which include agriculture, rescue operations, tracking, and surveillance. However, DoS/DDoS attacks disturb the behaviour of entire FANET which lead to unbalance energy, end-to-end delay, and packet loss. This research study is focused about the detail study of machine learning-based IDS. Also, cognitive lightweight-LR approach is modeled using UNSW-NB 15 dataset. IoT-based UAV network is introduced using machine learning to detect possible security attacks. The queuing and data traffic model is utilized to implement DT, RF, XGBoost, AdaBoost, Bagging and logistic regression in the environment of IoT-based UAV network. Logistic regression is the proposed approach which is used to estimate statistical possibility. Overall, experimentation is based on binomial distribution. There exists linear association approach in logistic regression. In comparison with other techniques, logistic regression behaviour is lightweight and low cost. The simulation results presents logistic regression better results in contrast with other techniques. Also, high accuracy is balanced well in optimal way." @default.
- W4367395368 created "2023-04-30" @default.
- W4367395368 creator A5007466643 @default.
- W4367395368 creator A5017457371 @default.
- W4367395368 creator A5036525291 @default.
- W4367395368 creator A5042127764 @default.
- W4367395368 creator A5045882715 @default.
- W4367395368 creator A5056886115 @default.
- W4367395368 creator A5070039535 @default.
- W4367395368 creator A5075949665 @default.
- W4367395368 creator A5078794607 @default.
- W4367395368 date "2023-04-29" @default.
- W4367395368 modified "2023-10-14" @default.
- W4367395368 title "Cognitive Lightweight Logistic Regression-Based IDS for IoT-Enabled FANET to Detect Cyberattacks" @default.
- W4367395368 cites W1472067 @default.
- W4367395368 cites W1522547150 @default.
- W4367395368 cites W2042588725 @default.
- W4367395368 cites W2065041047 @default.
- W4367395368 cites W2112965436 @default.
- W4367395368 cites W2130639236 @default.
- W4367395368 cites W2152761983 @default.
- W4367395368 cites W2216946510 @default.
- W4367395368 cites W2296509296 @default.
- W4367395368 cites W2318752590 @default.
- W4367395368 cites W2556851635 @default.
- W4367395368 cites W2625602624 @default.
- W4367395368 cites W2740755977 @default.
- W4367395368 cites W2775212671 @default.
- W4367395368 cites W2789282145 @default.
- W4367395368 cites W2789389144 @default.
- W4367395368 cites W2792328488 @default.
- W4367395368 cites W2797915143 @default.
- W4367395368 cites W2891131583 @default.
- W4367395368 cites W2892556724 @default.
- W4367395368 cites W2895269073 @default.
- W4367395368 cites W2923537029 @default.
- W4367395368 cites W2941288225 @default.
- W4367395368 cites W2964216374 @default.
- W4367395368 cites W2971518682 @default.
- W4367395368 cites W2977559140 @default.
- W4367395368 cites W2981876784 @default.
- W4367395368 cites W2998729480 @default.
- W4367395368 cites W2999585430 @default.
- W4367395368 cites W3000147031 @default.
- W4367395368 cites W3001869356 @default.
- W4367395368 cites W3011395188 @default.
- W4367395368 cites W3013330736 @default.
- W4367395368 cites W3031028459 @default.
- W4367395368 cites W3033412181 @default.
- W4367395368 cites W3081910249 @default.
- W4367395368 cites W3110377484 @default.
- W4367395368 cites W3136335707 @default.
- W4367395368 cites W3138080548 @default.
- W4367395368 cites W3148181069 @default.
- W4367395368 cites W3158456479 @default.
- W4367395368 cites W3173630589 @default.
- W4367395368 cites W3195888136 @default.
- W4367395368 cites W3209501825 @default.
- W4367395368 cites W3209622650 @default.
- W4367395368 cites W3210577968 @default.
- W4367395368 cites W4220784456 @default.
- W4367395368 cites W4220886040 @default.
- W4367395368 cites W4229029221 @default.
- W4367395368 cites W4243150065 @default.
- W4367395368 cites W4280523910 @default.
- W4367395368 cites W4280610250 @default.
- W4367395368 cites W4281817087 @default.
- W4367395368 cites W4283749421 @default.
- W4367395368 cites W4283790901 @default.
- W4367395368 cites W435157458 @default.
- W4367395368 doi "https://doi.org/10.1155/2023/7690322" @default.
- W4367395368 hasPublicationYear "2023" @default.
- W4367395368 type Work @default.
- W4367395368 citedByCount "0" @default.
- W4367395368 crossrefType "journal-article" @default.
- W4367395368 hasAuthorship W4367395368A5007466643 @default.
- W4367395368 hasAuthorship W4367395368A5017457371 @default.
- W4367395368 hasAuthorship W4367395368A5036525291 @default.
- W4367395368 hasAuthorship W4367395368A5042127764 @default.
- W4367395368 hasAuthorship W4367395368A5045882715 @default.
- W4367395368 hasAuthorship W4367395368A5056886115 @default.
- W4367395368 hasAuthorship W4367395368A5070039535 @default.
- W4367395368 hasAuthorship W4367395368A5075949665 @default.
- W4367395368 hasAuthorship W4367395368A5078794607 @default.
- W4367395368 hasBestOaLocation W43673953681 @default.
- W4367395368 hasConcept C110875604 @default.
- W4367395368 hasConcept C119857082 @default.
- W4367395368 hasConcept C136764020 @default.
- W4367395368 hasConcept C141404830 @default.
- W4367395368 hasConcept C151956035 @default.
- W4367395368 hasConcept C154945302 @default.
- W4367395368 hasConcept C158379750 @default.
- W4367395368 hasConcept C31258907 @default.
- W4367395368 hasConcept C38822068 @default.
- W4367395368 hasConcept C41008148 @default.
- W4367395368 hasConcept C79403827 @default.
- W4367395368 hasConcept C95623464 @default.
- W4367395368 hasConceptScore W4367395368C110875604 @default.