Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367395887> ?p ?o ?g. }
- W4367395887 abstract "Artificial intelligence is revolutionizing all fields that affect people's lives and health. One of the most critical applications is in the study of tumors. It is the case of glioblastoma (GBM) that has behaviors that need to be understood to develop effective therapies. Due to advances in single-cell RNA sequencing (scRNA-seq), it is possible to understand the cellular and molecular heterogeneity in the GBM. Given that there are different cell groups in these tumors, there is a need to apply Machine Learning (ML) algorithms. It will allow extracting information to understand how cancer changes and broaden the search for effective treatments. We proposed multiple comparisons of ML algorithms to classify cell groups based on the GBM scRNA-seq data. This broad comparison spectrum can show the scientific-medical community which models can achieve the best performance in this task. In this work are classified the following cell groups: Tumor Core (TC), Tumor Periphery (TP) and Normal Periphery (NP), in binary and multi-class scenarios. This work presents the biomarker candidates found for the models with the best results. The analyses presented here allow us to verify the biomarker candidates to understand the genetic characteristics of GBM, which may be affected by a suitable identification of GBM heterogeneity. This work obtained for the four scenarios covered cross-validation results of $93.03% pm 5.37%$, $97.42% pm 3.94%$, $98.27% pm 1.81%$ and $93.04% pm 6.88%$ for the classification of TP versus TC, TP versus NP, NP versus TP and TC (TPC) and NP versus TP versus TC, respectively." @default.
- W4367395887 created "2023-04-30" @default.
- W4367395887 creator A5014711220 @default.
- W4367395887 creator A5037358320 @default.
- W4367395887 creator A5062165084 @default.
- W4367395887 creator A5062391145 @default.
- W4367395887 creator A5069651458 @default.
- W4367395887 creator A5080165733 @default.
- W4367395887 date "2023-04-13" @default.
- W4367395887 modified "2023-10-18" @default.
- W4367395887 title "Machine learning applications on intratumoral heterogeneity in glioblastoma using single-cell RNA sequencing data" @default.
- W4367395887 cites W1552434751 @default.
- W4367395887 cites W1580018887 @default.
- W4367395887 cites W1968969471 @default.
- W4367395887 cites W1973045287 @default.
- W4367395887 cites W1980943088 @default.
- W4367395887 cites W2004147962 @default.
- W4367395887 cites W2030017878 @default.
- W4367395887 cites W2047287811 @default.
- W4367395887 cites W2056132907 @default.
- W4367395887 cites W2062346783 @default.
- W4367395887 cites W2070493638 @default.
- W4367395887 cites W2094467405 @default.
- W4367395887 cites W2096287682 @default.
- W4367395887 cites W2098740506 @default.
- W4367395887 cites W2107680358 @default.
- W4367395887 cites W2112452933 @default.
- W4367395887 cites W2136132422 @default.
- W4367395887 cites W2143455626 @default.
- W4367395887 cites W2159793693 @default.
- W4367395887 cites W2282352529 @default.
- W4367395887 cites W2342603028 @default.
- W4367395887 cites W2614794838 @default.
- W4367395887 cites W2615816755 @default.
- W4367395887 cites W2735067671 @default.
- W4367395887 cites W2736837310 @default.
- W4367395887 cites W2738946651 @default.
- W4367395887 cites W2753180990 @default.
- W4367395887 cites W2768149277 @default.
- W4367395887 cites W2793258150 @default.
- W4367395887 cites W2900657225 @default.
- W4367395887 cites W2901218091 @default.
- W4367395887 cites W2901481287 @default.
- W4367395887 cites W2902447942 @default.
- W4367395887 cites W2945020349 @default.
- W4367395887 cites W2949237386 @default.
- W4367395887 cites W2954312269 @default.
- W4367395887 cites W2954480978 @default.
- W4367395887 cites W2955744786 @default.
- W4367395887 cites W2960029024 @default.
- W4367395887 cites W2973085389 @default.
- W4367395887 cites W2986162201 @default.
- W4367395887 cites W2994745478 @default.
- W4367395887 cites W2995727696 @default.
- W4367395887 cites W3009131282 @default.
- W4367395887 cites W3010765930 @default.
- W4367395887 cites W3012679065 @default.
- W4367395887 cites W3031224726 @default.
- W4367395887 cites W3034181669 @default.
- W4367395887 cites W3039363706 @default.
- W4367395887 cites W3129151757 @default.
- W4367395887 cites W3134320006 @default.
- W4367395887 cites W3183679434 @default.
- W4367395887 cites W3188490672 @default.
- W4367395887 cites W3191260500 @default.
- W4367395887 cites W3198231732 @default.
- W4367395887 cites W3216625121 @default.
- W4367395887 cites W4200327950 @default.
- W4367395887 doi "https://doi.org/10.1093/bfgp/elad002" @default.
- W4367395887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37119295" @default.
- W4367395887 hasPublicationYear "2023" @default.
- W4367395887 type Work @default.
- W4367395887 citedByCount "0" @default.
- W4367395887 crossrefType "journal-article" @default.
- W4367395887 hasAuthorship W4367395887A5014711220 @default.
- W4367395887 hasAuthorship W4367395887A5037358320 @default.
- W4367395887 hasAuthorship W4367395887A5062165084 @default.
- W4367395887 hasAuthorship W4367395887A5062391145 @default.
- W4367395887 hasAuthorship W4367395887A5069651458 @default.
- W4367395887 hasAuthorship W4367395887A5080165733 @default.
- W4367395887 hasConcept C116834253 @default.
- W4367395887 hasConcept C119857082 @default.
- W4367395887 hasConcept C121608353 @default.
- W4367395887 hasConcept C154945302 @default.
- W4367395887 hasConcept C2776194525 @default.
- W4367395887 hasConcept C2781197716 @default.
- W4367395887 hasConcept C41008148 @default.
- W4367395887 hasConcept C502942594 @default.
- W4367395887 hasConcept C54355233 @default.
- W4367395887 hasConcept C59822182 @default.
- W4367395887 hasConcept C60644358 @default.
- W4367395887 hasConcept C70721500 @default.
- W4367395887 hasConcept C86803240 @default.
- W4367395887 hasConceptScore W4367395887C116834253 @default.
- W4367395887 hasConceptScore W4367395887C119857082 @default.
- W4367395887 hasConceptScore W4367395887C121608353 @default.
- W4367395887 hasConceptScore W4367395887C154945302 @default.
- W4367395887 hasConceptScore W4367395887C2776194525 @default.
- W4367395887 hasConceptScore W4367395887C2781197716 @default.
- W4367395887 hasConceptScore W4367395887C41008148 @default.