Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367397132> ?p ?o ?g. }
- W4367397132 endingPage "154674" @default.
- W4367397132 startingPage "154674" @default.
- W4367397132 abstract "With the advantages of low cost, small size and lightweight, the smartphone has played a more and more important role in pedestrian indoor positioning. In particular, the application of Pedestrian Dead Reckoning (PDR) in the smartphone built-in MEMS sensors makes the application of smartphone more extensive. However, the zero-bias instability of the smartphone built-in MEMS sensors leads to the rapid accumulation of pedestrian trajectory calculation error. To solve this problem, we used the bias drift model and Kalman filter (KF) to denoise the original MEMS data. The dual-feature step detection model of peak domain and time domain was established to provide accurate step information for step length estimation and heading correction. Based on the Weinberg model, the three-steps constraint step length estimation (TCSLE) model was proposed to estimate step length accurately. Then, based on the improved heuristic drift elimination (iHDE), the adaptive drift elimination (ADE) model was proposed to identify different walking states. The correction models under different walking states were established to correct the heading angle accurately. Finally, the pedestrian trajectory was reconstructed using accurate step length and heading information. To verify the performance of the PDR algorithm based on the above model, three experimenters with different heights and genders were recruited, and three mobile phones with different sensor performance were selected. The experimenters moved smoothly and steadily with hand-held mobile phone, and 18 sets of experiments were carried out along two paths. The experiment results shown that the step length deviation was less than 1.4871 %, the horizontal positioning error was less than 1.6070 m, and the relative positioning error was less than 1.1816 %D. The proposed PDR algorithm has strong adaptability and robustness, and meets the needs of pedestrian indoor positioning." @default.
- W4367397132 created "2023-04-30" @default.
- W4367397132 creator A5014850257 @default.
- W4367397132 creator A5020928322 @default.
- W4367397132 creator A5056101043 @default.
- W4367397132 creator A5076225461 @default.
- W4367397132 date "2023-08-01" @default.
- W4367397132 modified "2023-09-23" @default.
- W4367397132 title "An improved pedestrian dead reckoning algorithm based on smartphone built-in MEMS sensors" @default.
- W4367397132 cites W1504978873 @default.
- W4367397132 cites W2251760766 @default.
- W4367397132 cites W2519959519 @default.
- W4367397132 cites W2802740170 @default.
- W4367397132 cites W2883735935 @default.
- W4367397132 cites W2895822351 @default.
- W4367397132 cites W2902997965 @default.
- W4367397132 cites W2989277575 @default.
- W4367397132 cites W2992647966 @default.
- W4367397132 cites W3018780933 @default.
- W4367397132 cites W3033251915 @default.
- W4367397132 cites W3038474036 @default.
- W4367397132 cites W3089751102 @default.
- W4367397132 cites W3101801952 @default.
- W4367397132 cites W3156271080 @default.
- W4367397132 cites W3160480837 @default.
- W4367397132 cites W3166112397 @default.
- W4367397132 cites W3207719767 @default.
- W4367397132 cites W4200254172 @default.
- W4367397132 cites W4205137483 @default.
- W4367397132 cites W4223967328 @default.
- W4367397132 cites W4226021081 @default.
- W4367397132 cites W4286220118 @default.
- W4367397132 cites W4307547914 @default.
- W4367397132 cites W4307939625 @default.
- W4367397132 cites W4313398240 @default.
- W4367397132 cites W3150176987 @default.
- W4367397132 doi "https://doi.org/10.1016/j.aeue.2023.154674" @default.
- W4367397132 hasPublicationYear "2023" @default.
- W4367397132 type Work @default.
- W4367397132 citedByCount "0" @default.
- W4367397132 crossrefType "journal-article" @default.
- W4367397132 hasAuthorship W4367397132A5014850257 @default.
- W4367397132 hasAuthorship W4367397132A5020928322 @default.
- W4367397132 hasAuthorship W4367397132A5056101043 @default.
- W4367397132 hasAuthorship W4367397132A5076225461 @default.
- W4367397132 hasConcept C106165642 @default.
- W4367397132 hasConcept C11413529 @default.
- W4367397132 hasConcept C121332964 @default.
- W4367397132 hasConcept C127413603 @default.
- W4367397132 hasConcept C1276947 @default.
- W4367397132 hasConcept C13662910 @default.
- W4367397132 hasConcept C146978453 @default.
- W4367397132 hasConcept C154945302 @default.
- W4367397132 hasConcept C157286648 @default.
- W4367397132 hasConcept C173801870 @default.
- W4367397132 hasConcept C22212356 @default.
- W4367397132 hasConcept C2776937971 @default.
- W4367397132 hasConcept C2777113093 @default.
- W4367397132 hasConcept C31972630 @default.
- W4367397132 hasConcept C41008148 @default.
- W4367397132 hasConcept C44154836 @default.
- W4367397132 hasConcept C60229501 @default.
- W4367397132 hasConcept C76155785 @default.
- W4367397132 hasConcept C79403827 @default.
- W4367397132 hasConceptScore W4367397132C106165642 @default.
- W4367397132 hasConceptScore W4367397132C11413529 @default.
- W4367397132 hasConceptScore W4367397132C121332964 @default.
- W4367397132 hasConceptScore W4367397132C127413603 @default.
- W4367397132 hasConceptScore W4367397132C1276947 @default.
- W4367397132 hasConceptScore W4367397132C13662910 @default.
- W4367397132 hasConceptScore W4367397132C146978453 @default.
- W4367397132 hasConceptScore W4367397132C154945302 @default.
- W4367397132 hasConceptScore W4367397132C157286648 @default.
- W4367397132 hasConceptScore W4367397132C173801870 @default.
- W4367397132 hasConceptScore W4367397132C22212356 @default.
- W4367397132 hasConceptScore W4367397132C2776937971 @default.
- W4367397132 hasConceptScore W4367397132C2777113093 @default.
- W4367397132 hasConceptScore W4367397132C31972630 @default.
- W4367397132 hasConceptScore W4367397132C41008148 @default.
- W4367397132 hasConceptScore W4367397132C44154836 @default.
- W4367397132 hasConceptScore W4367397132C60229501 @default.
- W4367397132 hasConceptScore W4367397132C76155785 @default.
- W4367397132 hasConceptScore W4367397132C79403827 @default.
- W4367397132 hasLocation W43673971321 @default.
- W4367397132 hasOpenAccess W4367397132 @default.
- W4367397132 hasPrimaryLocation W43673971321 @default.
- W4367397132 hasRelatedWork W2000407620 @default.
- W4367397132 hasRelatedWork W2011224697 @default.
- W4367397132 hasRelatedWork W2089209527 @default.
- W4367397132 hasRelatedWork W2284001874 @default.
- W4367397132 hasRelatedWork W2569879513 @default.
- W4367397132 hasRelatedWork W2990535136 @default.
- W4367397132 hasRelatedWork W3199515608 @default.
- W4367397132 hasRelatedWork W4306839110 @default.
- W4367397132 hasRelatedWork W4323831453 @default.
- W4367397132 hasRelatedWork W864025373 @default.
- W4367397132 hasVolume "168" @default.
- W4367397132 isParatext "false" @default.