Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367400064> ?p ?o ?g. }
- W4367400064 endingPage "110392" @default.
- W4367400064 startingPage "110392" @default.
- W4367400064 abstract "The cable system is a critical load-bearing member and a vital factor of cable-stayed bridges; its health condition indicates the operation safety of these structures. The cable force estimation based on vibration is a major indicator for assessing the safety of cable-bearing bridges. Contact sensors are used to collect vibration in traditional cable systems. Recently, computer vision-based non-contact remote monitoring has gained popularity due to its cost, efficiency, and safety advantages. However, the cable is a unique structure with poor vision imaging, a low pixel share, and susceptibility to ambient interference. To address these issues, this study proposes a deep learning-based cable vibration recognition system. In complex environments, this system provides reliable recognition of cable vibration without the necessity of markers. The system consists of a composite model based on Resnet-34 (Residual Neural Network of 34 layers) and Swin-B (the base model in Swin Transformer), a linear rigid body motion recognizer based on Hough linear detection, and data processing. The pre-trained composite model performs cable segmentation on the video captured by the camera; this new video contains only cable data and is then transmitted to the linear rigid body recognizer, which recognizes cable vibration in the new video, and the cable force is determined by processing vibration data. As a result of the model experiments conducted in the laboratory and the cable test of cable-stayed bridges under complex outdoor conditions, the effectiveness and robustness of the system have been verified. The error of the proposed method in this study is found to be less than 2.0% comparing the results with that calculated from conventional sensors employed in the tests. The test results indicate that the system proposed in this paper is capable of conducting cable detection in complex environments." @default.
- W4367400064 created "2023-04-30" @default.
- W4367400064 creator A5005228021 @default.
- W4367400064 creator A5008489158 @default.
- W4367400064 creator A5008630780 @default.
- W4367400064 creator A5010080123 @default.
- W4367400064 creator A5010706327 @default.
- W4367400064 creator A5031234102 @default.
- W4367400064 creator A5071615222 @default.
- W4367400064 creator A5077862448 @default.
- W4367400064 date "2023-08-01" @default.
- W4367400064 modified "2023-10-18" @default.
- W4367400064 title "Target-free recognition of cable vibration in complex backgrounds based on computer vision" @default.
- W4367400064 cites W1928224908 @default.
- W4367400064 cites W1973517168 @default.
- W4367400064 cites W2006148803 @default.
- W4367400064 cites W2016486461 @default.
- W4367400064 cites W2031654445 @default.
- W4367400064 cites W2033151804 @default.
- W4367400064 cites W2132083787 @default.
- W4367400064 cites W2134931896 @default.
- W4367400064 cites W2161125683 @default.
- W4367400064 cites W2194775991 @default.
- W4367400064 cites W2289414106 @default.
- W4367400064 cites W2626576249 @default.
- W4367400064 cites W2759332716 @default.
- W4367400064 cites W2778764040 @default.
- W4367400064 cites W2780861787 @default.
- W4367400064 cites W2786579668 @default.
- W4367400064 cites W2899600658 @default.
- W4367400064 cites W2961348656 @default.
- W4367400064 cites W2986825110 @default.
- W4367400064 cites W2990984982 @default.
- W4367400064 cites W2997523342 @default.
- W4367400064 cites W3015261975 @default.
- W4367400064 cites W3034785488 @default.
- W4367400064 cites W3038116626 @default.
- W4367400064 cites W3048824092 @default.
- W4367400064 cites W3085046504 @default.
- W4367400064 cites W3113008830 @default.
- W4367400064 cites W3134684984 @default.
- W4367400064 cites W3138516171 @default.
- W4367400064 cites W3142456105 @default.
- W4367400064 cites W3171548819 @default.
- W4367400064 cites W3199539389 @default.
- W4367400064 cites W3202327408 @default.
- W4367400064 cites W4205327943 @default.
- W4367400064 cites W4205930708 @default.
- W4367400064 cites W4214542306 @default.
- W4367400064 cites W4220861160 @default.
- W4367400064 cites W4221126767 @default.
- W4367400064 cites W4224007840 @default.
- W4367400064 cites W4224805277 @default.
- W4367400064 cites W4281907710 @default.
- W4367400064 cites W4295334851 @default.
- W4367400064 cites W4297058717 @default.
- W4367400064 cites W4310016406 @default.
- W4367400064 cites W4312118307 @default.
- W4367400064 cites W4317528924 @default.
- W4367400064 doi "https://doi.org/10.1016/j.ymssp.2023.110392" @default.
- W4367400064 hasPublicationYear "2023" @default.
- W4367400064 type Work @default.
- W4367400064 citedByCount "2" @default.
- W4367400064 countsByYear W43674000642023 @default.
- W4367400064 crossrefType "journal-article" @default.
- W4367400064 hasAuthorship W4367400064A5005228021 @default.
- W4367400064 hasAuthorship W4367400064A5008489158 @default.
- W4367400064 hasAuthorship W4367400064A5008630780 @default.
- W4367400064 hasAuthorship W4367400064A5010080123 @default.
- W4367400064 hasAuthorship W4367400064A5010706327 @default.
- W4367400064 hasAuthorship W4367400064A5031234102 @default.
- W4367400064 hasAuthorship W4367400064A5071615222 @default.
- W4367400064 hasAuthorship W4367400064A5077862448 @default.
- W4367400064 hasConcept C104317684 @default.
- W4367400064 hasConcept C111919701 @default.
- W4367400064 hasConcept C121332964 @default.
- W4367400064 hasConcept C127413603 @default.
- W4367400064 hasConcept C154945302 @default.
- W4367400064 hasConcept C185592680 @default.
- W4367400064 hasConcept C198394728 @default.
- W4367400064 hasConcept C199978012 @default.
- W4367400064 hasConcept C24890656 @default.
- W4367400064 hasConcept C41008148 @default.
- W4367400064 hasConcept C55493867 @default.
- W4367400064 hasConcept C63479239 @default.
- W4367400064 hasConcept C89805583 @default.
- W4367400064 hasConceptScore W4367400064C104317684 @default.
- W4367400064 hasConceptScore W4367400064C111919701 @default.
- W4367400064 hasConceptScore W4367400064C121332964 @default.
- W4367400064 hasConceptScore W4367400064C127413603 @default.
- W4367400064 hasConceptScore W4367400064C154945302 @default.
- W4367400064 hasConceptScore W4367400064C185592680 @default.
- W4367400064 hasConceptScore W4367400064C198394728 @default.
- W4367400064 hasConceptScore W4367400064C199978012 @default.
- W4367400064 hasConceptScore W4367400064C24890656 @default.
- W4367400064 hasConceptScore W4367400064C41008148 @default.
- W4367400064 hasConceptScore W4367400064C55493867 @default.
- W4367400064 hasConceptScore W4367400064C63479239 @default.