Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367400400> ?p ?o ?g. }
- W4367400400 endingPage "117985" @default.
- W4367400400 startingPage "117985" @default.
- W4367400400 abstract "Precise estimation of the longitudinal dispersion coefficient (LDC) is crucial for the accurate simulation of water quality management tools such as assimilation capacity. Previous research analyzed the LDC of natural streams in two general categories: ignoring or considering the river sinuosity (σ). Genetic programming (GP) is used in this study to investigate both mentioned categories by applying two experimental datasets from 56 to 24 different rivers worldwide. The first proposed LDC equation of this research (without σ) improves the amounts of statistical measures R2 (Determination Coefficient), OI (Overall Index), NSE (Nash-Sutcliffe Efficiency), WI (Willmott's Index of Agreement), RMSE (Root Mean Square Error), and MAE (Mean Absolute Error) by 3.75%, 4.71%, 7.81%, 0.85%, 13.72%, and 0.68%, respectively, compared to the best values of these indicators in the previous investigations. Regarding the second category, relative and absolute sensitivity analyses are conducted, which reveal that σ is the most influential parameter in the accurate prediction of the LDC among all hydraulics and geometric parameters of the river. This part of the investigation presents four unique LDC equations that closely match the experimental results. Significant improvement of the most accurate presented LDC for statistical indices R2, OI, NSE, WI, RMSE, MAE, and accuracy percentage are obtained equal to 3.27%, 2.41%, 3.16%, 0.81%, 35.1%, 24.47%, 3.8%, respectively, in comparison with the best previous relations. Also, a new indicator for measuring the efficiency of mathematical equations called Mean Normalized Statistical Index (MNSI) is introduced and applied in different parts of this research. Finally, the assimilation capacity of the Kashafrud River is determined based on the analytical method of pollution propagation for three types of water demands utilizing the accurately presented LDC in 1993-2020. The average amount of river assimilation capacity using accurate LDC is simulated at 91.93 tons/day, much lower than the currently reported pollution entrance, which equals 540 tons/day." @default.
- W4367400400 created "2023-04-30" @default.
- W4367400400 creator A5071168111 @default.
- W4367400400 creator A5078181032 @default.
- W4367400400 date "2023-08-01" @default.
- W4367400400 modified "2023-10-02" @default.
- W4367400400 title "Application of genetic programming in presenting novel equations for longitudinal dispersion coefficient in natural streams considering rivers geometry - Implementation in assimilation capacity simulation" @default.
- W4367400400 cites W1545106967 @default.
- W4367400400 cites W1554846079 @default.
- W4367400400 cites W1574079794 @default.
- W4367400400 cites W1889156778 @default.
- W4367400400 cites W1924015273 @default.
- W4367400400 cites W1971285467 @default.
- W4367400400 cites W1973766131 @default.
- W4367400400 cites W1975934790 @default.
- W4367400400 cites W1976924745 @default.
- W4367400400 cites W1979769287 @default.
- W4367400400 cites W1984815740 @default.
- W4367400400 cites W1986248008 @default.
- W4367400400 cites W1991577169 @default.
- W4367400400 cites W1998847920 @default.
- W4367400400 cites W2010478016 @default.
- W4367400400 cites W2021250273 @default.
- W4367400400 cites W2021567869 @default.
- W4367400400 cites W2022977604 @default.
- W4367400400 cites W2030397346 @default.
- W4367400400 cites W2031538474 @default.
- W4367400400 cites W2031998728 @default.
- W4367400400 cites W2047215889 @default.
- W4367400400 cites W2048600507 @default.
- W4367400400 cites W2054151177 @default.
- W4367400400 cites W2056656981 @default.
- W4367400400 cites W2070091301 @default.
- W4367400400 cites W2081458989 @default.
- W4367400400 cites W2091344423 @default.
- W4367400400 cites W2113622890 @default.
- W4367400400 cites W2115934415 @default.
- W4367400400 cites W2122550310 @default.
- W4367400400 cites W2133532129 @default.
- W4367400400 cites W2146362072 @default.
- W4367400400 cites W2292599645 @default.
- W4367400400 cites W2336309268 @default.
- W4367400400 cites W2463883034 @default.
- W4367400400 cites W2471474416 @default.
- W4367400400 cites W2505250655 @default.
- W4367400400 cites W2530907430 @default.
- W4367400400 cites W2559471356 @default.
- W4367400400 cites W2580471102 @default.
- W4367400400 cites W2592227454 @default.
- W4367400400 cites W2601074364 @default.
- W4367400400 cites W2759607402 @default.
- W4367400400 cites W2796091388 @default.
- W4367400400 cites W2807336663 @default.
- W4367400400 cites W288531716 @default.
- W4367400400 cites W2900108582 @default.
- W4367400400 cites W2912641682 @default.
- W4367400400 cites W3003923450 @default.
- W4367400400 cites W3083307084 @default.
- W4367400400 cites W3134000219 @default.
- W4367400400 cites W3134573924 @default.
- W4367400400 cites W3167456695 @default.
- W4367400400 cites W3169665926 @default.
- W4367400400 cites W4221092230 @default.
- W4367400400 cites W4224084201 @default.
- W4367400400 cites W4320477927 @default.
- W4367400400 cites W4322617127 @default.
- W4367400400 doi "https://doi.org/10.1016/j.jenvman.2023.117985" @default.
- W4367400400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37126922" @default.
- W4367400400 hasPublicationYear "2023" @default.
- W4367400400 type Work @default.
- W4367400400 citedByCount "0" @default.
- W4367400400 crossrefType "journal-article" @default.
- W4367400400 hasAuthorship W4367400400A5071168111 @default.
- W4367400400 hasAuthorship W4367400400A5078181032 @default.
- W4367400400 hasConcept C105795698 @default.
- W4367400400 hasConcept C110332635 @default.
- W4367400400 hasConcept C119857082 @default.
- W4367400400 hasConcept C120665830 @default.
- W4367400400 hasConcept C121332964 @default.
- W4367400400 hasConcept C122383733 @default.
- W4367400400 hasConcept C127313418 @default.
- W4367400400 hasConcept C128990827 @default.
- W4367400400 hasConcept C139945424 @default.
- W4367400400 hasConcept C177562468 @default.
- W4367400400 hasConcept C187320778 @default.
- W4367400400 hasConcept C2524010 @default.
- W4367400400 hasConcept C33923547 @default.
- W4367400400 hasConcept C40222840 @default.
- W4367400400 hasConcept C41008148 @default.
- W4367400400 hasConcept C76886044 @default.
- W4367400400 hasConceptScore W4367400400C105795698 @default.
- W4367400400 hasConceptScore W4367400400C110332635 @default.
- W4367400400 hasConceptScore W4367400400C119857082 @default.
- W4367400400 hasConceptScore W4367400400C120665830 @default.
- W4367400400 hasConceptScore W4367400400C121332964 @default.
- W4367400400 hasConceptScore W4367400400C122383733 @default.
- W4367400400 hasConceptScore W4367400400C127313418 @default.
- W4367400400 hasConceptScore W4367400400C128990827 @default.