Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367459317> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4367459317 endingPage "308" @default.
- W4367459317 startingPage "300" @default.
- W4367459317 abstract "Nowadays, the application of traffic data collection in major cities around the world is constantly updated, which promotes the continuous improvement of short-term traffic prediction capabilities. The purpose of this paper is to study the short-term traffic flow (TF) prediction model based on BP neural network (NN) algorithm. This paper presents a new forecasting model and an algorithm for forecasting short-term TF. Short-term traffic forecasting will play a very important role in traffic management applications. This paper proposes a prediction algorithm based on BP NN, and uses the optimal density rule to improve the prediction algorithm. Based on the demand structure of the TF forecasting system, this article outlines the overall program flow. This article conducts TF forecasting analysis and processing on the experimental data obtained and used by the BP network, and compares them through experiments. It is concluded that the method is effective in improving TF. The accuracy of the forecast is valid. Experimental research shows that the degree of fit between the test output curve and the expected output curve in this paper is enhanced. In the case of relatively large actual output fluctuations, after GA optimizes the weights and thresholds of the BP NN, the convergence rate of the predicted output curve and the prediction accuracy are increased by 20%." @default.
- W4367459317 created "2023-05-01" @default.
- W4367459317 creator A5043415956 @default.
- W4367459317 creator A5046506634 @default.
- W4367459317 date "2023-01-01" @default.
- W4367459317 modified "2023-09-30" @default.
- W4367459317 title "Short-Term Traffic Flow Prediction Model Based on BP Neural Network Algorithm" @default.
- W4367459317 cites W2612750031 @default.
- W4367459317 cites W2806123914 @default.
- W4367459317 cites W2906154449 @default.
- W4367459317 cites W2965337007 @default.
- W4367459317 cites W3034944009 @default.
- W4367459317 cites W3124389259 @default.
- W4367459317 cites W3155617174 @default.
- W4367459317 cites W3157578889 @default.
- W4367459317 cites W4225710931 @default.
- W4367459317 cites W4248960939 @default.
- W4367459317 cites W4286647459 @default.
- W4367459317 doi "https://doi.org/10.1007/978-3-031-31860-3_32" @default.
- W4367459317 hasPublicationYear "2023" @default.
- W4367459317 type Work @default.
- W4367459317 citedByCount "0" @default.
- W4367459317 crossrefType "book-chapter" @default.
- W4367459317 hasAuthorship W4367459317A5043415956 @default.
- W4367459317 hasAuthorship W4367459317A5046506634 @default.
- W4367459317 hasConcept C11413529 @default.
- W4367459317 hasConcept C121332964 @default.
- W4367459317 hasConcept C124101348 @default.
- W4367459317 hasConcept C154945302 @default.
- W4367459317 hasConcept C162324750 @default.
- W4367459317 hasConcept C207512268 @default.
- W4367459317 hasConcept C2777303404 @default.
- W4367459317 hasConcept C38652104 @default.
- W4367459317 hasConcept C41008148 @default.
- W4367459317 hasConcept C50522688 @default.
- W4367459317 hasConcept C50644808 @default.
- W4367459317 hasConcept C61797465 @default.
- W4367459317 hasConcept C62520636 @default.
- W4367459317 hasConceptScore W4367459317C11413529 @default.
- W4367459317 hasConceptScore W4367459317C121332964 @default.
- W4367459317 hasConceptScore W4367459317C124101348 @default.
- W4367459317 hasConceptScore W4367459317C154945302 @default.
- W4367459317 hasConceptScore W4367459317C162324750 @default.
- W4367459317 hasConceptScore W4367459317C207512268 @default.
- W4367459317 hasConceptScore W4367459317C2777303404 @default.
- W4367459317 hasConceptScore W4367459317C38652104 @default.
- W4367459317 hasConceptScore W4367459317C41008148 @default.
- W4367459317 hasConceptScore W4367459317C50522688 @default.
- W4367459317 hasConceptScore W4367459317C50644808 @default.
- W4367459317 hasConceptScore W4367459317C61797465 @default.
- W4367459317 hasConceptScore W4367459317C62520636 @default.
- W4367459317 hasLocation W43674593171 @default.
- W4367459317 hasOpenAccess W4367459317 @default.
- W4367459317 hasPrimaryLocation W43674593171 @default.
- W4367459317 hasRelatedWork W184873195 @default.
- W4367459317 hasRelatedWork W2246950911 @default.
- W4367459317 hasRelatedWork W2348097614 @default.
- W4367459317 hasRelatedWork W2356755074 @default.
- W4367459317 hasRelatedWork W2359835678 @default.
- W4367459317 hasRelatedWork W2372022541 @default.
- W4367459317 hasRelatedWork W2380955682 @default.
- W4367459317 hasRelatedWork W2386387936 @default.
- W4367459317 hasRelatedWork W2392110728 @default.
- W4367459317 hasRelatedWork W2891769814 @default.
- W4367459317 isParatext "false" @default.
- W4367459317 isRetracted "false" @default.
- W4367459317 workType "book-chapter" @default.