Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367459503> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4367459503 endingPage "204" @default.
- W4367459503 startingPage "195" @default.
- W4367459503 abstract "Convolutional Neural Networks (CNNs) have proven to be an effective tool in many real-world applications. The main problem of CNNs is the lack of a well-defined and largely shared set of criteria for the choice of architecture for a given problem. This lack represents a drawback for this approach since the choice of architecture plays a crucial role in CNNs’performance. Usually, these architectures are manually designed by experts. However, such a design process is computationally intensive because of the trial-and-error process and also not easy to realize due to the high level of expertise required. Recently, to try to overcome those drawbacks, many techniques that automize the task of designing the architecture neural networks have been proposed. To denote these techniques has been defined the term “Neural Architecture Search” (NAS). Among the many methods available for NAS, Evolutionary Computation (EC) methods have recently gained much attention and success. In this paper, we present a novel approach based on evolutionary computation to optimize CNNs. The proposed approach is based on a newly devised structure which encodes both hyperparameters and the architecture of a CNN. The experimental results show that the proposed approach allows us to achieve better performance than that achieved by state-of-the-art CNNs on a real-world problem. Furthermore, the proposed approach can generate smaller networks than the state-of-the-art CNNs used for the comparison." @default.
- W4367459503 created "2023-05-01" @default.
- W4367459503 creator A5043790595 @default.
- W4367459503 creator A5048401807 @default.
- W4367459503 creator A5059797221 @default.
- W4367459503 creator A5061447464 @default.
- W4367459503 date "2023-01-01" @default.
- W4367459503 modified "2023-09-26" @default.
- W4367459503 title "A Novel Evolutionary Approach for Neural Architecture Search" @default.
- W4367459503 cites W2112796928 @default.
- W4367459503 cites W2953308748 @default.
- W4367459503 cites W2964081807 @default.
- W4367459503 cites W3163767593 @default.
- W4367459503 cites W3164008977 @default.
- W4367459503 cites W3192682950 @default.
- W4367459503 cites W3192966023 @default.
- W4367459503 cites W4224306200 @default.
- W4367459503 cites W4255158661 @default.
- W4367459503 doi "https://doi.org/10.1007/978-3-031-31183-3_16" @default.
- W4367459503 hasPublicationYear "2023" @default.
- W4367459503 type Work @default.
- W4367459503 citedByCount "0" @default.
- W4367459503 crossrefType "book-chapter" @default.
- W4367459503 hasAuthorship W4367459503A5043790595 @default.
- W4367459503 hasAuthorship W4367459503A5048401807 @default.
- W4367459503 hasAuthorship W4367459503A5059797221 @default.
- W4367459503 hasAuthorship W4367459503A5061447464 @default.
- W4367459503 hasConcept C105902424 @default.
- W4367459503 hasConcept C111919701 @default.
- W4367459503 hasConcept C11413529 @default.
- W4367459503 hasConcept C119857082 @default.
- W4367459503 hasConcept C123657996 @default.
- W4367459503 hasConcept C127413603 @default.
- W4367459503 hasConcept C142362112 @default.
- W4367459503 hasConcept C153349607 @default.
- W4367459503 hasConcept C154945302 @default.
- W4367459503 hasConcept C159149176 @default.
- W4367459503 hasConcept C177264268 @default.
- W4367459503 hasConcept C199360897 @default.
- W4367459503 hasConcept C201995342 @default.
- W4367459503 hasConcept C2780451532 @default.
- W4367459503 hasConcept C41008148 @default.
- W4367459503 hasConcept C45374587 @default.
- W4367459503 hasConcept C50644808 @default.
- W4367459503 hasConcept C81363708 @default.
- W4367459503 hasConcept C8642999 @default.
- W4367459503 hasConcept C98045186 @default.
- W4367459503 hasConceptScore W4367459503C105902424 @default.
- W4367459503 hasConceptScore W4367459503C111919701 @default.
- W4367459503 hasConceptScore W4367459503C11413529 @default.
- W4367459503 hasConceptScore W4367459503C119857082 @default.
- W4367459503 hasConceptScore W4367459503C123657996 @default.
- W4367459503 hasConceptScore W4367459503C127413603 @default.
- W4367459503 hasConceptScore W4367459503C142362112 @default.
- W4367459503 hasConceptScore W4367459503C153349607 @default.
- W4367459503 hasConceptScore W4367459503C154945302 @default.
- W4367459503 hasConceptScore W4367459503C159149176 @default.
- W4367459503 hasConceptScore W4367459503C177264268 @default.
- W4367459503 hasConceptScore W4367459503C199360897 @default.
- W4367459503 hasConceptScore W4367459503C201995342 @default.
- W4367459503 hasConceptScore W4367459503C2780451532 @default.
- W4367459503 hasConceptScore W4367459503C41008148 @default.
- W4367459503 hasConceptScore W4367459503C45374587 @default.
- W4367459503 hasConceptScore W4367459503C50644808 @default.
- W4367459503 hasConceptScore W4367459503C81363708 @default.
- W4367459503 hasConceptScore W4367459503C8642999 @default.
- W4367459503 hasConceptScore W4367459503C98045186 @default.
- W4367459503 hasLocation W43674595031 @default.
- W4367459503 hasOpenAccess W4367459503 @default.
- W4367459503 hasPrimaryLocation W43674595031 @default.
- W4367459503 hasRelatedWork W2901346193 @default.
- W4367459503 hasRelatedWork W2963891724 @default.
- W4367459503 hasRelatedWork W4210794429 @default.
- W4367459503 hasRelatedWork W4223456145 @default.
- W4367459503 hasRelatedWork W4229568052 @default.
- W4367459503 hasRelatedWork W4280535922 @default.
- W4367459503 hasRelatedWork W4287776258 @default.
- W4367459503 hasRelatedWork W4295309597 @default.
- W4367459503 hasRelatedWork W4309113015 @default.
- W4367459503 hasRelatedWork W4313854490 @default.
- W4367459503 isParatext "false" @default.
- W4367459503 isRetracted "false" @default.
- W4367459503 workType "book-chapter" @default.