Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367459712> ?p ?o ?g. }
- W4367459712 endingPage "29" @default.
- W4367459712 startingPage "3" @default.
- W4367459712 abstract "This chapter summarizes the theory of Generative Adversarial Networks (GANs), overviews the evolution of GAN methods that have either been used in published Augmented Reality (AR) research or have a strong potential for future AR work, and presents interesting use cases of GANs in AR. GAN is one of the most innovative deep learning techniques. Since it was first introduced in 2014, many variations have been proposed. Recent implementations can create photo-realistic high-fidelity visual content that is virtually indiscernible from real-world images. In AR, photo-realism is crucial for the user to perceive the composed reality as belonging to the same world. The composition of virtual objects into the real-world background must be done in a plausible way, with semantically-aware object placement, consistent illumination and convincingly cast shadows. Various GAN architectures were proposed that address one or another of these challenges. The discussed methods are categorized into three distinct groups that correspond to unrelated bodies of research: GANs for image composition, AR face filters, and 3D model generators." @default.
- W4367459712 created "2023-05-01" @default.
- W4367459712 creator A5067156249 @default.
- W4367459712 date "2023-01-01" @default.
- W4367459712 modified "2023-10-06" @default.
- W4367459712 title "Mixed Reality and Deep Learning: Augmenting Visual Information Using Generative Adversarial Networks" @default.
- W4367459712 cites W2085963752 @default.
- W4367459712 cites W2587706859 @default.
- W4367459712 cites W2744091666 @default.
- W4367459712 cites W2768699144 @default.
- W4367459712 cites W2798706078 @default.
- W4367459712 cites W2896240508 @default.
- W4367459712 cites W2904785373 @default.
- W4367459712 cites W2962770929 @default.
- W4367459712 cites W2962793481 @default.
- W4367459712 cites W2962907415 @default.
- W4367459712 cites W2963073614 @default.
- W4367459712 cites W2963092440 @default.
- W4367459712 cites W2963391470 @default.
- W4367459712 cites W2963470893 @default.
- W4367459712 cites W2963767194 @default.
- W4367459712 cites W2963800363 @default.
- W4367459712 cites W2964082390 @default.
- W4367459712 cites W2964245526 @default.
- W4367459712 cites W2964261768 @default.
- W4367459712 cites W2969222682 @default.
- W4367459712 cites W2969686176 @default.
- W4367459712 cites W2985840885 @default.
- W4367459712 cites W2989149111 @default.
- W4367459712 cites W3000393748 @default.
- W4367459712 cites W3000710748 @default.
- W4367459712 cites W3007646528 @default.
- W4367459712 cites W3011839173 @default.
- W4367459712 cites W3013175169 @default.
- W4367459712 cites W3024079478 @default.
- W4367459712 cites W3028869078 @default.
- W4367459712 cites W3034463304 @default.
- W4367459712 cites W3034600949 @default.
- W4367459712 cites W3035244041 @default.
- W4367459712 cites W3035574324 @default.
- W4367459712 cites W3042122388 @default.
- W4367459712 cites W3091647772 @default.
- W4367459712 cites W3104943862 @default.
- W4367459712 cites W3110387477 @default.
- W4367459712 cites W3116818516 @default.
- W4367459712 cites W3120602499 @default.
- W4367459712 cites W3143548498 @default.
- W4367459712 cites W3154831990 @default.
- W4367459712 cites W3164238066 @default.
- W4367459712 cites W3188904624 @default.
- W4367459712 cites W3212739755 @default.
- W4367459712 cites W3213039674 @default.
- W4367459712 cites W4200026070 @default.
- W4367459712 cites W4205203579 @default.
- W4367459712 cites W4206282044 @default.
- W4367459712 cites W4206697475 @default.
- W4367459712 cites W4210447173 @default.
- W4367459712 cites W4221036107 @default.
- W4367459712 cites W4312423208 @default.
- W4367459712 cites W4313128123 @default.
- W4367459712 doi "https://doi.org/10.1007/978-3-031-27166-3_1" @default.
- W4367459712 hasPublicationYear "2023" @default.
- W4367459712 type Work @default.
- W4367459712 citedByCount "0" @default.
- W4367459712 crossrefType "book-chapter" @default.
- W4367459712 hasAuthorship W4367459712A5067156249 @default.
- W4367459712 hasConcept C107457646 @default.
- W4367459712 hasConcept C108583219 @default.
- W4367459712 hasConcept C138885662 @default.
- W4367459712 hasConcept C153715457 @default.
- W4367459712 hasConcept C154945302 @default.
- W4367459712 hasConcept C199360897 @default.
- W4367459712 hasConcept C206776904 @default.
- W4367459712 hasConcept C26713055 @default.
- W4367459712 hasConcept C2776459999 @default.
- W4367459712 hasConcept C2781238097 @default.
- W4367459712 hasConcept C2988773926 @default.
- W4367459712 hasConcept C37736160 @default.
- W4367459712 hasConcept C39890363 @default.
- W4367459712 hasConcept C40231798 @default.
- W4367459712 hasConcept C41008148 @default.
- W4367459712 hasConcept C41895202 @default.
- W4367459712 hasConcept C76155785 @default.
- W4367459712 hasConceptScore W4367459712C107457646 @default.
- W4367459712 hasConceptScore W4367459712C108583219 @default.
- W4367459712 hasConceptScore W4367459712C138885662 @default.
- W4367459712 hasConceptScore W4367459712C153715457 @default.
- W4367459712 hasConceptScore W4367459712C154945302 @default.
- W4367459712 hasConceptScore W4367459712C199360897 @default.
- W4367459712 hasConceptScore W4367459712C206776904 @default.
- W4367459712 hasConceptScore W4367459712C26713055 @default.
- W4367459712 hasConceptScore W4367459712C2776459999 @default.
- W4367459712 hasConceptScore W4367459712C2781238097 @default.
- W4367459712 hasConceptScore W4367459712C2988773926 @default.
- W4367459712 hasConceptScore W4367459712C37736160 @default.
- W4367459712 hasConceptScore W4367459712C39890363 @default.
- W4367459712 hasConceptScore W4367459712C40231798 @default.
- W4367459712 hasConceptScore W4367459712C41008148 @default.