Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367462743> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4367462743 endingPage "259" @default.
- W4367462743 startingPage "251" @default.
- W4367462743 abstract "The images acquired in any modality will tend to have imposed noise in it. Denoising has to be done as a major step to perform further analysis. The denoising technique employed should be capable of removing all the noises present in the image. The dental panoramic X-ray images are denoised using discrete wavelet transform (DWT) and orthonormal wavelet transform (OWT) with Stein’s unbiased risk estimator (SURE). The performance analysis is done based on mean squared error (MSE) and peak signal-to-noise ratio (PSNR) values obtained from both the techniques. The denoising process preserves the information present in the signal like edges of the diseased signal. The denoised image is subjected to feature extraction and thresholding process to extract the diseased portion of the teeth. Artificial neural network is built to classify the images as normal or diseased teeth based on the extracted features. The performance analysis shows that orthonormal wavelet transform with Stein’s unbiased risk estimator performs well with good PSNR and MSE value." @default.
- W4367462743 created "2023-05-01" @default.
- W4367462743 creator A5003614922 @default.
- W4367462743 creator A5015803418 @default.
- W4367462743 creator A5018926750 @default.
- W4367462743 creator A5087009357 @default.
- W4367462743 date "2023-01-01" @default.
- W4367462743 modified "2023-09-26" @default.
- W4367462743 title "Performance Analysis of Panoramic Dental X-Ray Images Using Discrete Wavelet Transform and Unbiased Risk Estimation" @default.
- W4367462743 cites W1494195692 @default.
- W4367462743 cites W1972006109 @default.
- W4367462743 cites W2007203285 @default.
- W4367462743 cites W2039431682 @default.
- W4367462743 cites W2042267584 @default.
- W4367462743 cites W2043022774 @default.
- W4367462743 cites W2095332910 @default.
- W4367462743 cites W2116857329 @default.
- W4367462743 cites W2125527601 @default.
- W4367462743 cites W2134929491 @default.
- W4367462743 cites W2136396015 @default.
- W4367462743 cites W2146842127 @default.
- W4367462743 cites W2150134853 @default.
- W4367462743 cites W2913748912 @default.
- W4367462743 cites W3011612142 @default.
- W4367462743 cites W3037582100 @default.
- W4367462743 cites W3043944826 @default.
- W4367462743 cites W3162221703 @default.
- W4367462743 cites W59771946 @default.
- W4367462743 cites W77400524 @default.
- W4367462743 doi "https://doi.org/10.1007/978-981-19-8493-8_20" @default.
- W4367462743 hasPublicationYear "2023" @default.
- W4367462743 type Work @default.
- W4367462743 citedByCount "0" @default.
- W4367462743 crossrefType "book-chapter" @default.
- W4367462743 hasAuthorship W4367462743A5003614922 @default.
- W4367462743 hasAuthorship W4367462743A5015803418 @default.
- W4367462743 hasAuthorship W4367462743A5018926750 @default.
- W4367462743 hasAuthorship W4367462743A5087009357 @default.
- W4367462743 hasConcept C105795698 @default.
- W4367462743 hasConcept C115961682 @default.
- W4367462743 hasConcept C121332964 @default.
- W4367462743 hasConcept C139945424 @default.
- W4367462743 hasConcept C153180895 @default.
- W4367462743 hasConcept C154945302 @default.
- W4367462743 hasConcept C163294075 @default.
- W4367462743 hasConcept C185429906 @default.
- W4367462743 hasConcept C191178318 @default.
- W4367462743 hasConcept C196216189 @default.
- W4367462743 hasConcept C33923547 @default.
- W4367462743 hasConcept C41008148 @default.
- W4367462743 hasConcept C46286280 @default.
- W4367462743 hasConcept C47432892 @default.
- W4367462743 hasConcept C5806529 @default.
- W4367462743 hasConcept C62520636 @default.
- W4367462743 hasConcept C99498987 @default.
- W4367462743 hasConceptScore W4367462743C105795698 @default.
- W4367462743 hasConceptScore W4367462743C115961682 @default.
- W4367462743 hasConceptScore W4367462743C121332964 @default.
- W4367462743 hasConceptScore W4367462743C139945424 @default.
- W4367462743 hasConceptScore W4367462743C153180895 @default.
- W4367462743 hasConceptScore W4367462743C154945302 @default.
- W4367462743 hasConceptScore W4367462743C163294075 @default.
- W4367462743 hasConceptScore W4367462743C185429906 @default.
- W4367462743 hasConceptScore W4367462743C191178318 @default.
- W4367462743 hasConceptScore W4367462743C196216189 @default.
- W4367462743 hasConceptScore W4367462743C33923547 @default.
- W4367462743 hasConceptScore W4367462743C41008148 @default.
- W4367462743 hasConceptScore W4367462743C46286280 @default.
- W4367462743 hasConceptScore W4367462743C47432892 @default.
- W4367462743 hasConceptScore W4367462743C5806529 @default.
- W4367462743 hasConceptScore W4367462743C62520636 @default.
- W4367462743 hasConceptScore W4367462743C99498987 @default.
- W4367462743 hasLocation W43674627431 @default.
- W4367462743 hasOpenAccess W4367462743 @default.
- W4367462743 hasPrimaryLocation W43674627431 @default.
- W4367462743 hasRelatedWork W1921307661 @default.
- W4367462743 hasRelatedWork W2133244081 @default.
- W4367462743 hasRelatedWork W2134170479 @default.
- W4367462743 hasRelatedWork W2391471577 @default.
- W4367462743 hasRelatedWork W2393527321 @default.
- W4367462743 hasRelatedWork W2792520941 @default.
- W4367462743 hasRelatedWork W2875648348 @default.
- W4367462743 hasRelatedWork W801413400 @default.
- W4367462743 hasRelatedWork W985075059 @default.
- W4367462743 hasRelatedWork W2185227953 @default.
- W4367462743 isParatext "false" @default.
- W4367462743 isRetracted "false" @default.
- W4367462743 workType "book-chapter" @default.