Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367555555> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4367555555 endingPage "12" @default.
- W4367555555 startingPage "E" @default.
- W4367555555 abstract "The ability to understand surrounding environment compositionally by decomposing it into its individual components is important cognitive ability. Human beings decompose arbitral entities into some parts based on its semantics or functionality, and recognize those parts as “object”. Such kind of object recognition ability is fundamental to planning. Recently, researches called “scene interpretation” have been conducted using deep generative models. Those researches build models that are able to recognize environment compositionally. The objective of this paper is to extend scene interpretation methods. Application of existing methods are restricted to simple images, and could not deal with complex images such as real images and heavily textured images. This is because previous works are done in fully-unsupervised manner, and the objective function is just minimizing reconstruction error. Therefore, in this case, models have no clues about objects unlike models leveraging supervised information, or inductive bias. In this research, we propose a method to decompose scenes as intended using minimum auxiliary information to identify objects. We build a model that utilizes background as auxiliary information to separate representation of background and foreground, and then we show our method is able to deal with datasets that are difficult for existing methods." @default.
- W4367555555 created "2023-05-01" @default.
- W4367555555 creator A5044972626 @default.
- W4367555555 creator A5050341583 @default.
- W4367555555 creator A5085757164 @default.
- W4367555555 date "2023-05-01" @default.
- W4367555555 modified "2023-09-30" @default.
- W4367555555 title "Scene Interpretation by Deep Generative Model Utilizing Information of Backgrounds" @default.
- W4367555555 cites W1901129140 @default.
- W4367555555 cites W1903029394 @default.
- W4367555555 cites W2155183960 @default.
- W4367555555 cites W2808492412 @default.
- W4367555555 cites W2903585023 @default.
- W4367555555 cites W2963037989 @default.
- W4367555555 cites W2963093613 @default.
- W4367555555 cites W2963150697 @default.
- W4367555555 cites W2964352379 @default.
- W4367555555 cites W3096831136 @default.
- W4367555555 doi "https://doi.org/10.1527/tjsai.38-3_e-l35" @default.
- W4367555555 hasPublicationYear "2023" @default.
- W4367555555 type Work @default.
- W4367555555 citedByCount "0" @default.
- W4367555555 crossrefType "journal-article" @default.
- W4367555555 hasAuthorship W4367555555A5044972626 @default.
- W4367555555 hasAuthorship W4367555555A5050341583 @default.
- W4367555555 hasAuthorship W4367555555A5085757164 @default.
- W4367555555 hasBestOaLocation W43675555551 @default.
- W4367555555 hasConcept C119857082 @default.
- W4367555555 hasConcept C14036430 @default.
- W4367555555 hasConcept C153180895 @default.
- W4367555555 hasConcept C154945302 @default.
- W4367555555 hasConcept C167966045 @default.
- W4367555555 hasConcept C17744445 @default.
- W4367555555 hasConcept C184337299 @default.
- W4367555555 hasConcept C199360897 @default.
- W4367555555 hasConcept C199539241 @default.
- W4367555555 hasConcept C204321447 @default.
- W4367555555 hasConcept C2776359362 @default.
- W4367555555 hasConcept C2781238097 @default.
- W4367555555 hasConcept C39890363 @default.
- W4367555555 hasConcept C41008148 @default.
- W4367555555 hasConcept C527412718 @default.
- W4367555555 hasConcept C78458016 @default.
- W4367555555 hasConcept C86803240 @default.
- W4367555555 hasConcept C94625758 @default.
- W4367555555 hasConceptScore W4367555555C119857082 @default.
- W4367555555 hasConceptScore W4367555555C14036430 @default.
- W4367555555 hasConceptScore W4367555555C153180895 @default.
- W4367555555 hasConceptScore W4367555555C154945302 @default.
- W4367555555 hasConceptScore W4367555555C167966045 @default.
- W4367555555 hasConceptScore W4367555555C17744445 @default.
- W4367555555 hasConceptScore W4367555555C184337299 @default.
- W4367555555 hasConceptScore W4367555555C199360897 @default.
- W4367555555 hasConceptScore W4367555555C199539241 @default.
- W4367555555 hasConceptScore W4367555555C204321447 @default.
- W4367555555 hasConceptScore W4367555555C2776359362 @default.
- W4367555555 hasConceptScore W4367555555C2781238097 @default.
- W4367555555 hasConceptScore W4367555555C39890363 @default.
- W4367555555 hasConceptScore W4367555555C41008148 @default.
- W4367555555 hasConceptScore W4367555555C527412718 @default.
- W4367555555 hasConceptScore W4367555555C78458016 @default.
- W4367555555 hasConceptScore W4367555555C86803240 @default.
- W4367555555 hasConceptScore W4367555555C94625758 @default.
- W4367555555 hasIssue "3" @default.
- W4367555555 hasLocation W43675555551 @default.
- W4367555555 hasOpenAccess W4367555555 @default.
- W4367555555 hasPrimaryLocation W43675555551 @default.
- W4367555555 hasRelatedWork W1549289070 @default.
- W4367555555 hasRelatedWork W164504148 @default.
- W4367555555 hasRelatedWork W2073602652 @default.
- W4367555555 hasRelatedWork W2166426295 @default.
- W4367555555 hasRelatedWork W2884815824 @default.
- W4367555555 hasRelatedWork W3004808386 @default.
- W4367555555 hasRelatedWork W3006036127 @default.
- W4367555555 hasRelatedWork W4224928648 @default.
- W4367555555 hasRelatedWork W4380558667 @default.
- W4367555555 hasRelatedWork W3091374216 @default.
- W4367555555 hasVolume "38" @default.
- W4367555555 isParatext "false" @default.
- W4367555555 isRetracted "false" @default.
- W4367555555 workType "article" @default.