Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367591569> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4367591569 endingPage "151" @default.
- W4367591569 startingPage "145" @default.
- W4367591569 abstract "With the continuous development of the tourism industry, it has become a crucial issue to grasp the needs of tourists and accurately select suitable tourist attractions and related tourism services. The prediction model of popular tourist attractions can well solve the problem of decision-making of attractions in tourism activities. For tourists, it can help them choose the scenic spot products with the highest tourism utility, and for travel agencies, it can also improve customer satisfaction and efficiency. In this paper, a prediction system for popular tourist attractions is established, and a big data fusion algorithm is introduced into the system to collect users’ browsing data of scenic spots. By comparing the prediction accuracy of the system designed in this paper with the gray prediction model, the prediction system based on the big data fusion algorithm is verified. The prediction accuracy of popular attractions is higher." @default.
- W4367591569 created "2023-05-02" @default.
- W4367591569 creator A5080755441 @default.
- W4367591569 date "2023-01-01" @default.
- W4367591569 modified "2023-10-10" @default.
- W4367591569 title "Prediction Model of Popular Tourist Attractions Based on Big Data Fusion Algorithm" @default.
- W4367591569 cites W2792716871 @default.
- W4367591569 cites W2918695726 @default.
- W4367591569 cites W2998602813 @default.
- W4367591569 cites W3036408739 @default.
- W4367591569 cites W3096789256 @default.
- W4367591569 cites W3111330523 @default.
- W4367591569 cites W3111462612 @default.
- W4367591569 cites W3137624918 @default.
- W4367591569 cites W3140646222 @default.
- W4367591569 doi "https://doi.org/10.1007/978-981-99-2092-1_18" @default.
- W4367591569 hasPublicationYear "2023" @default.
- W4367591569 type Work @default.
- W4367591569 citedByCount "0" @default.
- W4367591569 crossrefType "book-chapter" @default.
- W4367591569 hasAuthorship W4367591569A5080755441 @default.
- W4367591569 hasConcept C124101348 @default.
- W4367591569 hasConcept C154945302 @default.
- W4367591569 hasConcept C166957645 @default.
- W4367591569 hasConcept C171268870 @default.
- W4367591569 hasConcept C18918823 @default.
- W4367591569 hasConcept C199360897 @default.
- W4367591569 hasConcept C205649164 @default.
- W4367591569 hasConcept C41008148 @default.
- W4367591569 hasConcept C75684735 @default.
- W4367591569 hasConceptScore W4367591569C124101348 @default.
- W4367591569 hasConceptScore W4367591569C154945302 @default.
- W4367591569 hasConceptScore W4367591569C166957645 @default.
- W4367591569 hasConceptScore W4367591569C171268870 @default.
- W4367591569 hasConceptScore W4367591569C18918823 @default.
- W4367591569 hasConceptScore W4367591569C199360897 @default.
- W4367591569 hasConceptScore W4367591569C205649164 @default.
- W4367591569 hasConceptScore W4367591569C41008148 @default.
- W4367591569 hasConceptScore W4367591569C75684735 @default.
- W4367591569 hasLocation W43675915691 @default.
- W4367591569 hasOpenAccess W4367591569 @default.
- W4367591569 hasPrimaryLocation W43675915691 @default.
- W4367591569 hasRelatedWork W2054689594 @default.
- W4367591569 hasRelatedWork W2344795249 @default.
- W4367591569 hasRelatedWork W2557924869 @default.
- W4367591569 hasRelatedWork W2888481972 @default.
- W4367591569 hasRelatedWork W2888922990 @default.
- W4367591569 hasRelatedWork W3154600049 @default.
- W4367591569 hasRelatedWork W3192511943 @default.
- W4367591569 hasRelatedWork W3214506804 @default.
- W4367591569 hasRelatedWork W4200303201 @default.
- W4367591569 hasRelatedWork W4321376912 @default.
- W4367591569 isParatext "false" @default.
- W4367591569 isRetracted "false" @default.
- W4367591569 workType "book-chapter" @default.