Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367592207> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4367592207 endingPage "173" @default.
- W4367592207 startingPage "151" @default.
- W4367592207 abstract "In the quest for early and better treatment, precisely predicting human diseases still remains a difficult endeavor, especially in the case of cancer. Cancer is a life-threatening disease that is affecting people of all ages across the globe. In many occurrences, it is often diagnosed in later stages, when it is too late to treat or rescue the patient. Doctors and scientists are constantly exploring techniques for early detection, systematic and affordable cancer treatment in order to meet this challenge. Machine learning, recommendation systems, and other computational techniques have aided them in such health-care studies. In recent years, health-care recommendation systems have gained popularity in providing predictive and prescriptive analysis to a problem. Furthermore, such systems can handle a wide range of health-care big data, including image, sound, and medical reports of patients. According to literature, a variety of recommendation systems have been developed in various cancer studies, including disease prediction based on text and image data, food and medicine recommendations, and so on. The only difficulty with such systems is that they are very specific and take only particular kinds of data. To be more precise in diagnosis and treatment of this deadly disease, we need systems to consider all aspects of the disease like its symptoms, lifestyles, allergens, genetics etc. Therefore, there is a need for a blended approach in the recommendation system. This chapter focuses on a breast cancer based recommendation system. It will provide insights into recommendation scenarios and recommendation approaches. The examples thereof are from prediction and treatment of breast cancer, recommendation for drug and rehabilitation. Additionally, we developed a blended approach giving a deeper understanding of recommendation algorithms in breast cancer study. Finally, we discuss the challenges concerning the development of recommender systems in the future." @default.
- W4367592207 created "2023-05-02" @default.
- W4367592207 creator A5014245509 @default.
- W4367592207 creator A5016491508 @default.
- W4367592207 creator A5030780624 @default.
- W4367592207 creator A5035682415 @default.
- W4367592207 creator A5073456039 @default.
- W4367592207 date "2023-01-01" @default.
- W4367592207 modified "2023-09-26" @default.
- W4367592207 title "Recommendation Systems for Cancer Prognosis, Treatment and Wellness" @default.
- W4367592207 cites W1139185857 @default.
- W4367592207 cites W1530276735 @default.
- W4367592207 cites W1608786995 @default.
- W4367592207 cites W1973387286 @default.
- W4367592207 cites W2065948967 @default.
- W4367592207 cites W2111547563 @default.
- W4367592207 cites W2269332562 @default.
- W4367592207 cites W2344480160 @default.
- W4367592207 cites W2381569410 @default.
- W4367592207 cites W2560035653 @default.
- W4367592207 cites W2606498060 @default.
- W4367592207 cites W2782524587 @default.
- W4367592207 cites W2868151631 @default.
- W4367592207 cites W2916041164 @default.
- W4367592207 cites W2947272707 @default.
- W4367592207 cites W2950063908 @default.
- W4367592207 cites W2953532875 @default.
- W4367592207 cites W3003416411 @default.
- W4367592207 cites W3042243717 @default.
- W4367592207 cites W3093756915 @default.
- W4367592207 cites W3165307686 @default.
- W4367592207 cites W3201487061 @default.
- W4367592207 doi "https://doi.org/10.1007/978-981-99-0377-1_10" @default.
- W4367592207 hasPublicationYear "2023" @default.
- W4367592207 type Work @default.
- W4367592207 citedByCount "0" @default.
- W4367592207 crossrefType "book-chapter" @default.
- W4367592207 hasAuthorship W4367592207A5014245509 @default.
- W4367592207 hasAuthorship W4367592207A5016491508 @default.
- W4367592207 hasAuthorship W4367592207A5030780624 @default.
- W4367592207 hasAuthorship W4367592207A5035682415 @default.
- W4367592207 hasAuthorship W4367592207A5073456039 @default.
- W4367592207 hasConcept C118487528 @default.
- W4367592207 hasConcept C119857082 @default.
- W4367592207 hasConcept C121608353 @default.
- W4367592207 hasConcept C126322002 @default.
- W4367592207 hasConcept C136197465 @default.
- W4367592207 hasConcept C142724271 @default.
- W4367592207 hasConcept C154945302 @default.
- W4367592207 hasConcept C15744967 @default.
- W4367592207 hasConcept C160735492 @default.
- W4367592207 hasConcept C162324750 @default.
- W4367592207 hasConcept C163763905 @default.
- W4367592207 hasConcept C2522767166 @default.
- W4367592207 hasConcept C2775899829 @default.
- W4367592207 hasConcept C2779134260 @default.
- W4367592207 hasConcept C2780586970 @default.
- W4367592207 hasConcept C41008148 @default.
- W4367592207 hasConcept C50522688 @default.
- W4367592207 hasConcept C557471498 @default.
- W4367592207 hasConcept C71924100 @default.
- W4367592207 hasConcept C77805123 @default.
- W4367592207 hasConceptScore W4367592207C118487528 @default.
- W4367592207 hasConceptScore W4367592207C119857082 @default.
- W4367592207 hasConceptScore W4367592207C121608353 @default.
- W4367592207 hasConceptScore W4367592207C126322002 @default.
- W4367592207 hasConceptScore W4367592207C136197465 @default.
- W4367592207 hasConceptScore W4367592207C142724271 @default.
- W4367592207 hasConceptScore W4367592207C154945302 @default.
- W4367592207 hasConceptScore W4367592207C15744967 @default.
- W4367592207 hasConceptScore W4367592207C160735492 @default.
- W4367592207 hasConceptScore W4367592207C162324750 @default.
- W4367592207 hasConceptScore W4367592207C163763905 @default.
- W4367592207 hasConceptScore W4367592207C2522767166 @default.
- W4367592207 hasConceptScore W4367592207C2775899829 @default.
- W4367592207 hasConceptScore W4367592207C2779134260 @default.
- W4367592207 hasConceptScore W4367592207C2780586970 @default.
- W4367592207 hasConceptScore W4367592207C41008148 @default.
- W4367592207 hasConceptScore W4367592207C50522688 @default.
- W4367592207 hasConceptScore W4367592207C557471498 @default.
- W4367592207 hasConceptScore W4367592207C71924100 @default.
- W4367592207 hasConceptScore W4367592207C77805123 @default.
- W4367592207 hasLocation W43675922071 @default.
- W4367592207 hasOpenAccess W4367592207 @default.
- W4367592207 hasPrimaryLocation W43675922071 @default.
- W4367592207 hasRelatedWork W2133515697 @default.
- W4367592207 hasRelatedWork W2369936857 @default.
- W4367592207 hasRelatedWork W2511908772 @default.
- W4367592207 hasRelatedWork W2517139124 @default.
- W4367592207 hasRelatedWork W2748952813 @default.
- W4367592207 hasRelatedWork W2809363009 @default.
- W4367592207 hasRelatedWork W2899084033 @default.
- W4367592207 hasRelatedWork W2968745142 @default.
- W4367592207 hasRelatedWork W3122188068 @default.
- W4367592207 hasRelatedWork W4297670124 @default.
- W4367592207 isParatext "false" @default.
- W4367592207 isRetracted "false" @default.
- W4367592207 workType "book-chapter" @default.