Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367595576> ?p ?o ?g. }
- W4367595576 endingPage "1208" @default.
- W4367595576 startingPage "1192" @default.
- W4367595576 abstract "We introduce a novel method using a new generative model that automatically learns effective representations of the target and background appearance to detect, segment and track each instance in a video sequence. Differently from current discriminative tracking-by-detection solutions, our proposed hierarchical structural embedding learning can predict more high-quality masks with accurate boundary details over spatio-temporal space via the normalizing flows. We formulate the instance inference procedure as a hierarchical spatio-temporal embedded learning across time and space. Given the video clip, our method first coarsely locates pixels belonging to a particular instance with Gaussian distribution and then builds a novel mixing distribution to promote the instance boundary by fusing hierarchical appearance embedding information in a coarse-to-fine manner. For the mixing distribution, we utilize a factorization condition normalized flow fashion to estimate the distribution parameters to improve the segmentation performance. Comprehensive qualitative, quantitative, and ablation experiments are performed on three representative video instance segmentation benchmarks (i.e., YouTube-VIS <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>19</inf> , YouTube-VIS <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>21</inf> , and OVIS) and the effectiveness of the proposed method is demonstrated. More impressively, the superior performance of our model on an unsupervised video object segmentation dataset (i.e., DAVIS <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>19</inf> ) proves its generalizability. Our algorithm implementations are publicly available at https://github.com/zyqin19/HEVis." @default.
- W4367595576 created "2023-05-02" @default.
- W4367595576 creator A5005421447 @default.
- W4367595576 creator A5019824207 @default.
- W4367595576 creator A5035643040 @default.
- W4367595576 creator A5062453382 @default.
- W4367595576 creator A5081796777 @default.
- W4367595576 creator A5084853102 @default.
- W4367595576 date "2023-05-01" @default.
- W4367595576 modified "2023-10-10" @default.
- W4367595576 title "Coarse-to-Fine Video Instance Segmentation With Factorized Conditional Appearance Flows" @default.
- W4367595576 cites W1954128991 @default.
- W4367595576 cites W2150408100 @default.
- W4367595576 cites W2167331599 @default.
- W4367595576 cites W2187051054 @default.
- W4367595576 cites W2194775991 @default.
- W4367595576 cites W2222512263 @default.
- W4367595576 cites W2470139095 @default.
- W4367595576 cites W2507009361 @default.
- W4367595576 cites W2566030665 @default.
- W4367595576 cites W2585592883 @default.
- W4367595576 cites W2603203130 @default.
- W4367595576 cites W2737008123 @default.
- W4367595576 cites W2792215676 @default.
- W4367595576 cites W2887503470 @default.
- W4367595576 cites W2895340898 @default.
- W4367595576 cites W2916797271 @default.
- W4367595576 cites W2921536280 @default.
- W4367595576 cites W2957408986 @default.
- W4367595576 cites W2962825871 @default.
- W4367595576 cites W2963150697 @default.
- W4367595576 cites W2963548592 @default.
- W4367595576 cites W2964226882 @default.
- W4367595576 cites W2969686176 @default.
- W4367595576 cites W2982723417 @default.
- W4367595576 cites W2984835641 @default.
- W4367595576 cites W2986056979 @default.
- W4367595576 cites W2986615800 @default.
- W4367595576 cites W2987391422 @default.
- W4367595576 cites W2989193306 @default.
- W4367595576 cites W2995962724 @default.
- W4367595576 cites W2996435388 @default.
- W4367595576 cites W2996537443 @default.
- W4367595576 cites W2997487053 @default.
- W4367595576 cites W2999458807 @default.
- W4367595576 cites W3034499084 @default.
- W4367595576 cites W3034650337 @default.
- W4367595576 cites W3035549667 @default.
- W4367595576 cites W3035649147 @default.
- W4367595576 cites W3038324153 @default.
- W4367595576 cites W3095495550 @default.
- W4367595576 cites W3108664802 @default.
- W4367595576 cites W3109372619 @default.
- W4367595576 cites W3110109236 @default.
- W4367595576 cites W3125444135 @default.
- W4367595576 cites W3138516171 @default.
- W4367595576 cites W3139267983 @default.
- W4367595576 cites W3167949052 @default.
- W4367595576 cites W3169933013 @default.
- W4367595576 cites W3171175128 @default.
- W4367595576 cites W3171516518 @default.
- W4367595576 cites W3173217100 @default.
- W4367595576 cites W3173980723 @default.
- W4367595576 cites W3176880348 @default.
- W4367595576 cites W3181286780 @default.
- W4367595576 cites W3182236906 @default.
- W4367595576 cites W3188394685 @default.
- W4367595576 cites W3188582951 @default.
- W4367595576 cites W3199334903 @default.
- W4367595576 cites W3202509201 @default.
- W4367595576 cites W3202801842 @default.
- W4367595576 cites W3212555189 @default.
- W4367595576 cites W4214613769 @default.
- W4367595576 cites W4226436950 @default.
- W4367595576 cites W4283732315 @default.
- W4367595576 cites W4294811295 @default.
- W4367595576 cites W4295832257 @default.
- W4367595576 cites W4312294051 @default.
- W4367595576 cites W4312573566 @default.
- W4367595576 cites W4313192411 @default.
- W4367595576 cites W4313267411 @default.
- W4367595576 doi "https://doi.org/10.1109/jas.2023.123456" @default.
- W4367595576 hasPublicationYear "2023" @default.
- W4367595576 type Work @default.
- W4367595576 citedByCount "6" @default.
- W4367595576 countsByYear W43675955762023 @default.
- W4367595576 crossrefType "journal-article" @default.
- W4367595576 hasAuthorship W4367595576A5005421447 @default.
- W4367595576 hasAuthorship W4367595576A5019824207 @default.
- W4367595576 hasAuthorship W4367595576A5035643040 @default.
- W4367595576 hasAuthorship W4367595576A5062453382 @default.
- W4367595576 hasAuthorship W4367595576A5081796777 @default.
- W4367595576 hasAuthorship W4367595576A5084853102 @default.
- W4367595576 hasConcept C134306372 @default.
- W4367595576 hasConcept C153180895 @default.
- W4367595576 hasConcept C154945302 @default.
- W4367595576 hasConcept C160633673 @default.
- W4367595576 hasConcept C2776214188 @default.