Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367596453> ?p ?o ?g. }
- W4367596453 endingPage "5572" @default.
- W4367596453 startingPage "5572" @default.
- W4367596453 abstract "In computer vision, the convolutional neural network (CNN) is a very popular model used for emotion recognition. It has been successfully applied to detect various objects in digital images with remarkable accuracy. In this paper, we extracted learned features from a pre-trained CNN and evaluated different machine learning (ML) algorithms to perform classification. Our research looks at the impact of replacing the standard SoftMax classifier with other ML algorithms by applying them to the FC6, FC7, and FC8 layers of Deep Convolutional Neural Networks (DCNNs). Experiments were conducted on two well-known CNN architectures, AlexNet and VGG-16, using a dataset of masked facial expressions (MLF-W-FER dataset). The results of our experiments demonstrate that Support Vector Machine (SVM) and Ensemble classifiers outperform the SoftMax classifier on both AlexNet and VGG-16 architectures. These algorithms were able to achieve improved accuracy of between 7% and 9% on each layer, suggesting that replacing the classifier in each layer of a DCNN with SVM or ensemble classifiers can be an efficient method for enhancing image classification performance. Overall, our research demonstrates the potential for combining the strengths of CNNs and other machine learning (ML) algorithms to achieve better results in emotion recognition tasks. By extracting learned features from pre-trained CNNs and applying a variety of classifiers, we provide a framework for investigating alternative methods to improve the accuracy of image classification." @default.
- W4367596453 created "2023-05-02" @default.
- W4367596453 creator A5006976650 @default.
- W4367596453 creator A5016255950 @default.
- W4367596453 creator A5031902955 @default.
- W4367596453 creator A5037103657 @default.
- W4367596453 creator A5052231339 @default.
- W4367596453 creator A5062907646 @default.
- W4367596453 date "2023-04-30" @default.
- W4367596453 modified "2023-10-17" @default.
- W4367596453 title "Hybrid Facial Emotion Recognition Using CNN-Based Features" @default.
- W4367596453 cites W1986614398 @default.
- W4367596453 cites W2783662494 @default.
- W4367596453 cites W2792191740 @default.
- W4367596453 cites W2793592543 @default.
- W4367596453 cites W2793853260 @default.
- W4367596453 cites W2883725317 @default.
- W4367596453 cites W2905388713 @default.
- W4367596453 cites W2914569332 @default.
- W4367596453 cites W2920067160 @default.
- W4367596453 cites W2969054484 @default.
- W4367596453 cites W2972621596 @default.
- W4367596453 cites W2985778816 @default.
- W4367596453 cites W2996746405 @default.
- W4367596453 cites W2999869395 @default.
- W4367596453 cites W3007800177 @default.
- W4367596453 cites W3017118041 @default.
- W4367596453 cites W3026256782 @default.
- W4367596453 cites W3027682070 @default.
- W4367596453 cites W3033403042 @default.
- W4367596453 cites W3083204037 @default.
- W4367596453 cites W3087110941 @default.
- W4367596453 cites W3094838460 @default.
- W4367596453 cites W3109932136 @default.
- W4367596453 cites W3111370776 @default.
- W4367596453 cites W3137043336 @default.
- W4367596453 cites W3156664941 @default.
- W4367596453 cites W3156940584 @default.
- W4367596453 cites W3157607303 @default.
- W4367596453 cites W3194028613 @default.
- W4367596453 cites W3194730353 @default.
- W4367596453 cites W3200566176 @default.
- W4367596453 cites W3203381531 @default.
- W4367596453 cites W3212103117 @default.
- W4367596453 cites W4214934944 @default.
- W4367596453 cites W4220732847 @default.
- W4367596453 cites W4284895461 @default.
- W4367596453 cites W4293235800 @default.
- W4367596453 cites W4308125397 @default.
- W4367596453 cites W4312552559 @default.
- W4367596453 cites W4313585894 @default.
- W4367596453 cites W4320001418 @default.
- W4367596453 doi "https://doi.org/10.3390/app13095572" @default.
- W4367596453 hasPublicationYear "2023" @default.
- W4367596453 type Work @default.
- W4367596453 citedByCount "3" @default.
- W4367596453 countsByYear W43675964532023 @default.
- W4367596453 crossrefType "journal-article" @default.
- W4367596453 hasAuthorship W4367596453A5006976650 @default.
- W4367596453 hasAuthorship W4367596453A5016255950 @default.
- W4367596453 hasAuthorship W4367596453A5031902955 @default.
- W4367596453 hasAuthorship W4367596453A5037103657 @default.
- W4367596453 hasAuthorship W4367596453A5052231339 @default.
- W4367596453 hasAuthorship W4367596453A5062907646 @default.
- W4367596453 hasBestOaLocation W43675964531 @default.
- W4367596453 hasConcept C119857082 @default.
- W4367596453 hasConcept C12267149 @default.
- W4367596453 hasConcept C153180895 @default.
- W4367596453 hasConcept C154945302 @default.
- W4367596453 hasConcept C188441871 @default.
- W4367596453 hasConcept C41008148 @default.
- W4367596453 hasConcept C81363708 @default.
- W4367596453 hasConcept C95623464 @default.
- W4367596453 hasConceptScore W4367596453C119857082 @default.
- W4367596453 hasConceptScore W4367596453C12267149 @default.
- W4367596453 hasConceptScore W4367596453C153180895 @default.
- W4367596453 hasConceptScore W4367596453C154945302 @default.
- W4367596453 hasConceptScore W4367596453C188441871 @default.
- W4367596453 hasConceptScore W4367596453C41008148 @default.
- W4367596453 hasConceptScore W4367596453C81363708 @default.
- W4367596453 hasConceptScore W4367596453C95623464 @default.
- W4367596453 hasFunder F4320321145 @default.
- W4367596453 hasIssue "9" @default.
- W4367596453 hasLocation W43675964531 @default.
- W4367596453 hasLocation W43675964532 @default.
- W4367596453 hasOpenAccess W4367596453 @default.
- W4367596453 hasPrimaryLocation W43675964531 @default.
- W4367596453 hasRelatedWork W2743258233 @default.
- W4367596453 hasRelatedWork W2782709127 @default.
- W4367596453 hasRelatedWork W2977314777 @default.
- W4367596453 hasRelatedWork W2996933976 @default.
- W4367596453 hasRelatedWork W3034884618 @default.
- W4367596453 hasRelatedWork W3120400911 @default.
- W4367596453 hasRelatedWork W3132076239 @default.
- W4367596453 hasRelatedWork W3208266890 @default.
- W4367596453 hasRelatedWork W4307834408 @default.
- W4367596453 hasRelatedWork W4320925816 @default.
- W4367596453 hasVolume "13" @default.