Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367597295> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4367597295 abstract "A multi-omics dataset combining clinical features with the discovery of biomarkers could contribute significantly to the timely identification of mortality risk and the develop- ment of personalized therapies for a wide range of diseases, including cancer and stroke. As well, new advances in “omics” technologies can open up a lot of possibilities for researchers to find disease biomarkers through system-level analysis. Machine learning methods, es- pecially based on tensor decomposition methods (TD-based), are becoming more popular because the integrative analysis of multi-omics data is challenging due to biological com- plexity. Therefore, it is important to identify future research directions and opportunities on the topic of biomarker discovery using tensor decompositions in multi-omics datasets by integrating literature reviews. This article systematically reviews the research trends from 2015 to 2022. Several themes are discussed, including challenges and problems of de- veloping and applying tensor decompactions, application areas for biomarker discovery in “omics” datasets, proposed methodologies, key evaluation criteria used in deciding whether the new methods are effective, and the limitations and shortcomings of this field, which call for further research and development. This review helps researchers who are interested in this field understand what research has already been done and where potential areas for future research might lie." @default.
- W4367597295 created "2023-05-02" @default.
- W4367597295 creator A5006834843 @default.
- W4367597295 creator A5071622159 @default.
- W4367597295 creator A5073479907 @default.
- W4367597295 date "2023-05-01" @default.
- W4367597295 modified "2023-10-18" @default.
- W4367597295 title "Biomarker discovery in multi-omics datasets using tensor decompositions; A comprehensive review" @default.
- W4367597295 doi "https://doi.org/10.29007/8xdb" @default.
- W4367597295 hasPublicationYear "2023" @default.
- W4367597295 type Work @default.
- W4367597295 citedByCount "0" @default.
- W4367597295 crossrefType "proceedings-article" @default.
- W4367597295 hasAuthorship W4367597295A5006834843 @default.
- W4367597295 hasAuthorship W4367597295A5071622159 @default.
- W4367597295 hasAuthorship W4367597295A5073479907 @default.
- W4367597295 hasBestOaLocation W43675972951 @default.
- W4367597295 hasConcept C104317684 @default.
- W4367597295 hasConcept C116834253 @default.
- W4367597295 hasConcept C124101348 @default.
- W4367597295 hasConcept C124535831 @default.
- W4367597295 hasConcept C155281189 @default.
- W4367597295 hasConcept C157585117 @default.
- W4367597295 hasConcept C202444582 @default.
- W4367597295 hasConcept C2522767166 @default.
- W4367597295 hasConcept C2781197716 @default.
- W4367597295 hasConcept C2986737658 @default.
- W4367597295 hasConcept C33923547 @default.
- W4367597295 hasConcept C41008148 @default.
- W4367597295 hasConcept C46111723 @default.
- W4367597295 hasConcept C55493867 @default.
- W4367597295 hasConcept C59822182 @default.
- W4367597295 hasConcept C60644358 @default.
- W4367597295 hasConcept C86803240 @default.
- W4367597295 hasConcept C9652623 @default.
- W4367597295 hasConceptScore W4367597295C104317684 @default.
- W4367597295 hasConceptScore W4367597295C116834253 @default.
- W4367597295 hasConceptScore W4367597295C124101348 @default.
- W4367597295 hasConceptScore W4367597295C124535831 @default.
- W4367597295 hasConceptScore W4367597295C155281189 @default.
- W4367597295 hasConceptScore W4367597295C157585117 @default.
- W4367597295 hasConceptScore W4367597295C202444582 @default.
- W4367597295 hasConceptScore W4367597295C2522767166 @default.
- W4367597295 hasConceptScore W4367597295C2781197716 @default.
- W4367597295 hasConceptScore W4367597295C2986737658 @default.
- W4367597295 hasConceptScore W4367597295C33923547 @default.
- W4367597295 hasConceptScore W4367597295C41008148 @default.
- W4367597295 hasConceptScore W4367597295C46111723 @default.
- W4367597295 hasConceptScore W4367597295C55493867 @default.
- W4367597295 hasConceptScore W4367597295C59822182 @default.
- W4367597295 hasConceptScore W4367597295C60644358 @default.
- W4367597295 hasConceptScore W4367597295C86803240 @default.
- W4367597295 hasConceptScore W4367597295C9652623 @default.
- W4367597295 hasLocation W43675972951 @default.
- W4367597295 hasOpenAccess W4367597295 @default.
- W4367597295 hasPrimaryLocation W43675972951 @default.
- W4367597295 hasRelatedWork W2050781983 @default.
- W4367597295 hasRelatedWork W2061449873 @default.
- W4367597295 hasRelatedWork W2111793469 @default.
- W4367597295 hasRelatedWork W2507716202 @default.
- W4367597295 hasRelatedWork W2809127686 @default.
- W4367597295 hasRelatedWork W2901821658 @default.
- W4367597295 hasRelatedWork W2945804912 @default.
- W4367597295 hasRelatedWork W3163281713 @default.
- W4367597295 hasRelatedWork W4200328016 @default.
- W4367597295 hasRelatedWork W4367597295 @default.
- W4367597295 isParatext "false" @default.
- W4367597295 isRetracted "false" @default.
- W4367597295 workType "article" @default.