Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367597802> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4367597802 abstract "Medical research has made tremendous progress in detecting various pathologies in the human body. There is still the problem of the speed of the process, and the lack of a sufficient number of trained professionals in this field. Detection of prostate cancer, in particular, without surgery is a very labor- intensive process. A neural network-based machine learning algorithm has been proposed to solve this problem, making it possible to see suspected areas of lesions in the organ. In this study, a comprehensive analysis of TRUS image processing approaches was carried out, and an algorithm architecture was developed to segment the affected areas. Based on this analysis, we have developed a system for automatic detection and segmentation of prostate cancer." @default.
- W4367597802 created "2023-05-02" @default.
- W4367597802 creator A5000408509 @default.
- W4367597802 creator A5020694663 @default.
- W4367597802 creator A5060261504 @default.
- W4367597802 date "2023-03-27" @default.
- W4367597802 modified "2023-09-27" @default.
- W4367597802 title "Segmentation of Prostate Cancer on TRUS Images Using ML" @default.
- W4367597802 cites W2080725537 @default.
- W4367597802 cites W2252728384 @default.
- W4367597802 cites W2486993069 @default.
- W4367597802 cites W2794022343 @default.
- W4367597802 cites W2901324294 @default.
- W4367597802 cites W3011664876 @default.
- W4367597802 cites W3128646645 @default.
- W4367597802 cites W3170432162 @default.
- W4367597802 cites W3211281229 @default.
- W4367597802 cites W4212814582 @default.
- W4367597802 cites W4220807233 @default.
- W4367597802 cites W4238678407 @default.
- W4367597802 cites W4245220288 @default.
- W4367597802 cites W4284967308 @default.
- W4367597802 cites W4308149656 @default.
- W4367597802 cites W4308657700 @default.
- W4367597802 cites W4317513920 @default.
- W4367597802 cites W4318320897 @default.
- W4367597802 cites W4319839004 @default.
- W4367597802 cites W4320525814 @default.
- W4367597802 doi "https://doi.org/10.1109/smartindustrycon57312.2023.10110727" @default.
- W4367597802 hasPublicationYear "2023" @default.
- W4367597802 type Work @default.
- W4367597802 citedByCount "1" @default.
- W4367597802 countsByYear W43675978022023 @default.
- W4367597802 crossrefType "proceedings-article" @default.
- W4367597802 hasAuthorship W4367597802A5000408509 @default.
- W4367597802 hasAuthorship W4367597802A5020694663 @default.
- W4367597802 hasAuthorship W4367597802A5060261504 @default.
- W4367597802 hasConcept C111919701 @default.
- W4367597802 hasConcept C119857082 @default.
- W4367597802 hasConcept C121608353 @default.
- W4367597802 hasConcept C124504099 @default.
- W4367597802 hasConcept C126322002 @default.
- W4367597802 hasConcept C153180895 @default.
- W4367597802 hasConcept C154945302 @default.
- W4367597802 hasConcept C202444582 @default.
- W4367597802 hasConcept C2780192828 @default.
- W4367597802 hasConcept C31601959 @default.
- W4367597802 hasConcept C31972630 @default.
- W4367597802 hasConcept C33923547 @default.
- W4367597802 hasConcept C41008148 @default.
- W4367597802 hasConcept C50644808 @default.
- W4367597802 hasConcept C71924100 @default.
- W4367597802 hasConcept C89600930 @default.
- W4367597802 hasConcept C9652623 @default.
- W4367597802 hasConcept C98045186 @default.
- W4367597802 hasConceptScore W4367597802C111919701 @default.
- W4367597802 hasConceptScore W4367597802C119857082 @default.
- W4367597802 hasConceptScore W4367597802C121608353 @default.
- W4367597802 hasConceptScore W4367597802C124504099 @default.
- W4367597802 hasConceptScore W4367597802C126322002 @default.
- W4367597802 hasConceptScore W4367597802C153180895 @default.
- W4367597802 hasConceptScore W4367597802C154945302 @default.
- W4367597802 hasConceptScore W4367597802C202444582 @default.
- W4367597802 hasConceptScore W4367597802C2780192828 @default.
- W4367597802 hasConceptScore W4367597802C31601959 @default.
- W4367597802 hasConceptScore W4367597802C31972630 @default.
- W4367597802 hasConceptScore W4367597802C33923547 @default.
- W4367597802 hasConceptScore W4367597802C41008148 @default.
- W4367597802 hasConceptScore W4367597802C50644808 @default.
- W4367597802 hasConceptScore W4367597802C71924100 @default.
- W4367597802 hasConceptScore W4367597802C89600930 @default.
- W4367597802 hasConceptScore W4367597802C9652623 @default.
- W4367597802 hasConceptScore W4367597802C98045186 @default.
- W4367597802 hasLocation W43675978021 @default.
- W4367597802 hasOpenAccess W4367597802 @default.
- W4367597802 hasPrimaryLocation W43675978021 @default.
- W4367597802 hasRelatedWork W1669643531 @default.
- W4367597802 hasRelatedWork W1982826852 @default.
- W4367597802 hasRelatedWork W2005437358 @default.
- W4367597802 hasRelatedWork W2008656436 @default.
- W4367597802 hasRelatedWork W2023558673 @default.
- W4367597802 hasRelatedWork W2110230079 @default.
- W4367597802 hasRelatedWork W2134924024 @default.
- W4367597802 hasRelatedWork W2517104666 @default.
- W4367597802 hasRelatedWork W2613186388 @default.
- W4367597802 hasRelatedWork W1967061043 @default.
- W4367597802 isParatext "false" @default.
- W4367597802 isRetracted "false" @default.
- W4367597802 workType "article" @default.